Амортизатор в конце вагона

Toyota Crown Wagon Graveyard Express › Бортжурнал › пружины для Вагона

Лааадно. Я обещал информативный полезный пост про пружины, вот он.

После того, как моя гандола не захотела держаться на волнах даже после смены амортизаторов, а морда вообще шкрябала крыльями о колёса, то было решено поменять и пружины.

Но ни один из владелец вагонов, высота и просвет в колёсных арках которых, мне нравились, не мог сказать какой именно длины у него стоят пружины. Спереди и сзади. А какие стоят у меня самого я не знал. Знал только, что правая задняя на 5мм ниже левой.

Поэтому пришлось выяснять самому. И эксперементировать. За свой счёт.

Не много подумав я обратился с этим вопросом в Интернет.
Вариантов производителей пружин было : NHK и OBK. Оба бренда японские, но OBK чот хуесосили, а про NHK писали, что они или не проседают вообще или проседают незначительно один раз и вполне прогнозируемо.

Осталось определитЦа с длиной.

Характерно, что самым популярным номером для пужин был номер из номенклатуры OBK, типа c4t-ххххх. По нему пружины в магазинах находились лучше, чем по каталожному от Тойоты. Но длина, конечно, нигде не указывалась. Почти.

Я забрался в каталог OBK и слегонца офигел от увиденного.

Из таблички выходит, что на GS130G спереди ставилось два разных вида пружин. Бгг. С задними было всё более менее ясно. Они на всех вагонах одинаковы и их длина составляет 350мм.

Но у нас ещё остались пружины NHK! И как вы могли уже забыть, в прошлом посте уже мелькали какие-то коробки с логотипом «NHK«. И на коробке написано XP TY496F. Но посмотрим что в табличке у них.

Хм… а какого же чёрта я тогда купил XP TY496F?!111 А потому что дёшево отдавали.

1500р./шт. И они были длиннее. А я хотел передок повыше! И чтобы не цепляло! И, о, да! Он стал повыше!

Такой результат меня не сильно устраивал. Поэтому я купил ещё и XP TY497F. Это было сложно и я почти отчаялся, но бывает так, что даже в мою сторону иногда смотрит Господь… …и в его взгляде нету ненависти. х) Стало чуть подороже (

2400р./шт), но главное, что стало.

Итак.
Задние пружины NHK XP TY274R350мм

Задние пружины NHK XP TY274R 2400р./комплект
Передние пружины NHK XP TY497F 428мм 4800р./комплект
Передние пружины NHK XP TY496F 456мм 3000р./комплект
Установка задних — 800р.
Установка передних — (менялись со ступицами) 1600р.
Установка передних — (2ой раз) 3000р.

З.Ы. Если надо, то 496F продаются. UPD: продались

Источник

Тема № 3: УСТРОЙСТВО (КОНСТРУКЦИЯ) КУЗОВА ТРАМВАЙНОГО ВАГОНА.

Каркас кузова трамвайного вагона цельнометаллический, сварной, несущей конструкции. Он состоит из рамы, левой и правой боковин с обшивкой, передней и задней площадок с обшивкой, каркаса крыши, каркасов фальшбортов и переборки кабины. Боковины, передняя и задняя площадки опираются на раму и соединяются с ней электросваркой по всему периметру. Крыша опирается на боковины и соединяется с ними также электросваркой по всему периметру. Сваренный кузов образует жесткую конструкцию. Кроме вышеперечисленных узлов, на кузове смонтированы: лестница для подъема на крышу, кронштейны для междувагонной сетки, которая устанавливается при использовании вагонов по СМЕ, софит для размещения номера маршрута и цветных софитных огней.

Крышу, боковины и обшивку площадок изготавливают из штампованных стальных профилей. Для защиты от коррозии кузов и потолок покрывают двумя слоями грунта и слоем противошумной мастики толщиной не менее 4 мм.

Рама кузова состоит из средней части и двух площадок – передней и задней. Рама выполнена в виде системы продольных и поперечных балок, соединенных электросваркой. В средней части рамы две центральные продольные балки называются ХРЕБТОВЫМИ, изготовлены из швеллера № 12, расстояние между ними 302 мм. Продольные балки средней части, расположенные по краям, называются БОКОВЫМИ ПРОДОЛЬНЫМИ БАЛКАМИ, являются нижним поясом боковых стенок кузова, изготовлены из швеллера № 8. Правая боковая продольная балка в средней части имеет разрыв для устройства дверного проема.

Поперечные балки рамы кузова имеют различную конструкцию и жесткость в зависимости от их назначения.

ШКВОРНЕВЫЕ БАЛКИ, расстояние между которыми определяется базой вагона, равной 7500 мм, предназначены для передачи вертикальных усилий от кузова вагона на пятник тележки. Каждая шкворневая балка сварной конструкции, коробчатого сечения, со стороны опоры на тележку имеет приваренную подушку и кольцо, которое фиксирует кузов на пятнике тележки и предохраняет его от возможного смещения.

В средней части рамы установлены ПОПЕРЕЧНЫЕ БАЛКИ ДЛЯ ОПОРЫ ПОЛА. Эти балки сварены из стального уголка 45х45х5 мм и стального листа толщиной 5 мм.

Рамы передней и задней площадок имеют суженную форму за счет установленного по периметру площадок ОБВЯЗОЧНОГО ШВЕЛЛЕРА, образующего очертания вагона в плане. С правой стороны площадки обвязочный швеллер имеет разрыв для монтажа подножки.

Вдоль продольной оси передней и задней площадок установлены АППАРАТНЫЕ БАЛКИ, изготовленные из двух параллельно расположенных швеллеров. Один конец аппаратной балки сочленяется с продолжением хребтовой балки средней части рамы кузова, а другой – с лобовой поперечной балкой, к которой крепится бампер. В просвет аппаратной балки между двумя швеллерами вварена БУФЕРНАЯ КОРОБКА. На задней площадке, кроме буферной коробки, в образовавшийся просвет вварен контейнер для хранения экипировочного инвентаря.

Рамы площадок имеют развитую систему раскосов, которые расположены с таким расчетом, чтобы обеспечить жесткость рамы по всем направлениям.

Кроме перечисленных балок, рама кузова имеет ряд вспомогательных элементов, как продольных, так и поперечных, служащих для крепления различной аппаратуры и оборудования.

Каркас левой боковины состоит из продольных и поперечных связей и приваренной к ним наружной обшивки. Вертикальными связями являются металлические стойки П-образного сечения, а продольными – металлические профили П-образного сечения, образующие подоконную обвязку. Вертикальные связи, подоконные и надоконные обвязки образуют оконные проемы 1160х1410 мм. Правая боковина изготовлена из тех же элементов, что и левая, но имеет конструктивное дополнение, вызванное наличием среднего дверного проема.

Передняя площадка состоит из каркаса, обшитого стальным листом. Каркас изготовлен из тех же профилей, что и боковины кузова, за исключением боковых стоек, образующих оконный проем лобового стекла. Задняя площадка в основном аналогична передней площадке, отличие лишь в дополнительных планках и угольниках и отверстиях для крепления наружной, внутренней арматуры и слоистого пластика.

Крыша вагона представляет собой сварную конструкцию, состоящую их каркаса и обшивки. Все элементы каркаса крыши изготовлены из листа толщиной 2 мм, а элементы обшивки – из листа толщиной 1,5 мм.

Откидной фальшборт представляет собой продольные и поперечные связи, к которым точечной сваркой приварена обшивка. Петлями фальшборт крепится к нижней полке продольного швеллера рамы вагона. Для удержания фальшборта в открытом состоянии, а также во избежание его дребезжания во время движения вагона, откидной фальшборт оборудован специальным механизмом фиксации.

Двери вагона одинаковы по конструкции, внешне чем-то напоминают ширму и поэтому носят название ширмовые двери. Состоят из четырех створок, изготовленных из стальных штампованных профилей. В верхней части двери имеют проемы для остекления. Крепление стекол осуществляется с помощью профильной резины с замком, что исключает проникновение воды и дребезжание стекол. Каждая створка двери оборудована концевым выключателем, с помощью которого водитель получает сигнал об открытом или закрытом состоянии дверей. Сиденья в пассажирском салоне состоят из каркаса, подушки и спинки. Каркас сиденья сварной, изготовлен из труб диаметром 25 мм. Верхняя часть каркаса образует основание для крепления подушки и спинки, а нижняя часть состоит из четырех ножек с планками, с помощью которых сиденье крепится к полу. В местах расположения песочниц нижняя часть сиденья представляет собой ящик, в котором расположен бункер и механизм песочницы. Подушка и спинка имеют деревянный каркас, на который наклеен поролон толщиной 20-40 мм. Обтяжка подушки и спинки – искусственная кожа.

Для настила пола в вагоне используются шпунтовые сосновые доски толщиной 40 мм, которые крепятся болтами М10. На доски настилается резиновая дорожка толщиной 5 мм, закрывающая весь пол. Крепление резины осуществляется клеем 88, края дорожек в местах стыков закрывают металлическим и планками, которые крепят к полу шурупами. Торцы досок в районе площадок закрывают штампованным угольником. Для осмотра тележек и ТЭД в полу прорезаны смотровые люки, которые закрываются крышками. Каркас крышки сварен из уголков и стальных планок и заполнен досками той же толщины, что и доски пола. Допустимое возвышение крышки люка над поверхностью пола не более 8 мм.

Читайте также:  Бачок антифриз для ланоса

ВЕНТИЛЯЦИЯ САЛОНА осуществляется через крышевые вентияционные люки, двери вагона и оконные форточки.

ВНУТРЕННЯЯ ОТДЕЛКА, ТЕПЛО – И ЗВУКОИЗОЛЯЦИЯ ВАГОНА. В качестве отделочного материала на вагоне применяется слоистый пластик спокойных цветовых тонов и декоративные алюминиевые профили, которые устанавливаются в местах стыка листов пластика. В качестве звукоизоляции применяют мастику № 579, которую ровным слоем толщиной 4 мм наносят на внутреннюю сторону наружной обшивки и каркаса. В ячейки между металлическими профилями по кузову на боковые стенки и потолок укладывают теплоизоляционные пакеты из полиамидной пленки, заполненные мипорой и запаянные по периметру. Толщина пакета – 46 мм.

Внутренняя кузовная арматура вагона включает в себя:

· Потолочные штанги-поручни с кронштейнами;

· Оконные ограждения и их кронштейны;

· Ящики для использованных билетов.

Все поручни и ограждения изготовлены из дюралюминиевых труб, а кронштейны – из алюминиевых сплавов.

Тема: ТЕЛЕЖКИ ТРАМВАЙНЫХ ВАГОНОВ «ЛМ-68М» И «ЛВС-86К».

Общие сведения о тележке.

Тележки трамвайного вагона предназначены:

· Для восприятия вертикальных нагрузок от массы кузова и пассажиров и передачи их колесным парам;

· Для распределения нагрузки между осями колесных пар;

· Для восприятия горизонтальной нагрузки, возникающей при движении и передачи ее от кузова на оси колесных пар;

· Для передачи кузову силы тяги и торможения;

· Для направления осей колесных пар и обеспечения вписывания вагона в кривые участки пути.

Вагон «ЛМ-68М» оборудован двумя поворотными двухосными тележками мостового типа с условной рамой. Применение их обеспечивает спокойное движение и плавное вписывание вагона в кривые. При движении вагона разворот тележек относительно кузова до 15 градусов осуществляется при помощи пятника, установленного на шкворневой балке центрального рессорного подвешивания.

Основные параметры тележки:

· Максимальный продольный габарит – 2640 мм.

· Максимальный поперечный габарит – 2200 мм.

· Масса тележки с ТЭД – 4500 кг.

Рама тележки.

Тележка трамвайного вагона по своей конструкции не имеет ярко выраженной рамы. Условную раму тележки образуют две продольные балки с приваренными к ним по концам лапами, которые опираются на шейки длинного и короткого кожухов редуктора в местах расположения осевых подшипников. Между лапами и шейками кожухов редуктора проложена ребристая резиновая прокладка, которая обеспечивает упругую связь с колесной парой и компенсирует диагональную деформацию условной рамы при вписывании тележки в кривые. Резиновая прокладка устраняет также шум и вибрацию.

Продольная балка тележки представляет собой сварную конструкцию коробчатого сечения, изготовленную из стали толщиной 12 мм. По концам балки вварены стальные литые лапы. В лапах имеются выступы прямоугольной формы, в которые входят выступы (клыки) кожуха редуктора с ввернутыми в них пресс-масленками для смазки сферических подшипников. К балке приваривают кронштейн для установки резиновых буферов ЦРП и подвески двигателей, кронштейны для установки резиновых армированных буферов и подвески ТЭД, опорную скобу для установки амортизатора подвески двигателя, упор рельсового тормоза, кронштейн реактивного упора, кронштейны подвески рельсового тормоза и кронштейн шарнирной тяги.

На тележке смонтированы:

· Две колесные пары с подрезиненными колесами;

· Четыре надколесных кожуха;

· Четыре песочных направителя;

· Два двухступенчатых редуктора;

· Два тяговых электродвигателя;

· Две моторноподвесные балки;

· Два карданных вала;

· Два реактивных упора;

· Четыре заземляющих устройства моторов (ЗУМ), по два на каждом редукторе;

Источник

Ходовая часть вагонов

Содержание

Ходовая часть локомотивов

Ходовая часть у разных видов локомотивов выполняется по-разному, в зависимости от вида силовой установки. В настоящее время все локомотивы опираются на две тележки, обеспечивающие локомотиву максимальную плавность хода и вписывание в кривые. Тележки могут быть четырёхколёсными или шестиколёсными. Шестиколёсные тележки делаются для мощных локомотивов с большой силой тяги. В случае необходимости дальнейшего увеличения мощности локомотив делают двухсекционным, то есть выполняют в виде двух локомотивов, соединённых между собой.

Тележки электровозов

Тележка электровоза состоит из рамы, колёсных пар с буксами, рессорного подвешивания и тормозного оборудования. К тележкам крепят тяговые электродвигатели. У электровозов с несочленёнными тележками тяговые усилия передаются упряжными приборами (автосцепками), расположенными на раме кузова. Рама кузова опирается на тележки через специальные опорные устройства.

На современных электровозах применяют, как правило, индивидуальный привод. При этом различают два вида подвески тяговых электродвигателей — опорно-осевую и рамную.

Тележки тепловозов

У большинства тепловозов главная рама кузова опирается на две трехосные тележки через восемь боковых опор. Тележки имеют раму, опоры, буксы, колёсные пары, рессорное подвешивание и тормозное оборудование.

Ходовая часть вагонов

Ходовая часть вагонов включает в себя колёсные пары, буксы с подшипниками и рессорное подвешивание, воспринимающие от вагона нагрузку и обеспечивающие его безопасное и плавное движение. В четырехосных и многоосных вагонах эти элементы объединены в тележки, обеспечивающие более легкое прохождение вагонов в кривых участках и более плавный ход.

Колесные пары

Колёсная пара, состоящая из оси и двух наглухо закреплённых на ней колес диаметром 950…1050 мм, воспринимает все нагрузки, передающиеся от вагона на рельсы.

Буксы

Буксы служат для передачи давления от вагона на шейки осей колёсных пар, а также ограничения продольного и поперечного перемещения колёсной пары.

Рессоры

Для смягчения ударов и уменьшения амплитуды колебаний вагона при прохождении по неровностям пути между рамой вагона и колёсной парой размещают систему упругих элементов и гасителей калебаний (ресорное подвешивание). В качестве упругих элементов применяют винтовые пружины, листовые рессоры, резинометаллические элементы и пневматические рессоры (резинокордовые оболочки, заполненные воздухом).

Гасители колебаний

Гасители колебаний предназначены для создания сил, обеспечивающих устранение или уменьшение амплитуды колебаний вагонов или его частей. На дорогах России наиболее широкое распространение получили гидравлические и фрикционные гасители колебаний. Принцип действия гидравлических гасителей заключается в последовательном перемещении вязкой жидкости под действием растягивающих или сжимающих сил с помощью поршневой системы из одной полости цилиндра в другую.

В фрикционных гасителях колебаний силы трения возникают при вертикальном и горизонтальном перемещениях клиньев гасителя, трущихся о фрикционные планки, укреплённые на колонках боковин тележек.

Тележки вагонов

По числу осей тележки бывают двух-, трех-, четырех- и многоосные. Наибольшее распространение получили двухосные тележки.

На тележках пассажирских вагонов устанавливаются гидравлические гасители колебаний совместно с пружинными рессорами. Для смягчения боковых толчков от набегания гребня колёс на рельсы при входе в кривые тележки оборудуют возвращающими устройствами (люльками). Тележки пассажирских вагонов имеют двойное рессорное подвешивание, обеспечивающие бо́льшую плавность хода. (см. рисунок)

В тележках грузовых вагонов используются фрикционные гасители колебаний, они не имеют люлечного устройства и имеют, как правило, одинарное рессорное подвешивание. (см. рисунок). Восмиосные полувагоны и цистерны устанавливаются на четырехосные тележки, основой которых являются те же двухосные, но связанные между собой штампосварной соединительной балкой.

Тележки большинства изотермических вагонов отличаются от грузовых двойным рессорным подвешиванием — центральное подвешивание на листовых замкнутых рессорах, буксовое на пружинах.

Тележки скоростных поездов

Ходовая часть автомобиля

Ходовая часть состоит из:

Ходовая часть автомобиля предназначена для перемещения автомобиля по дороге, причем с определенным уровнем комфорта, без тряски и вибраций. Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы действующие на автомобиль.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами, и быстрые колебания с малыми амплитудами. От быстрых колебаний защищает мягкая обивка сидений, резиновые опоры двигателя, коробки передач и так далее. Защитой от медленных колебаний служат упругие элементы подвески, колеса и шины.

Ходовая часть трамваев

Литература

Смотреть что такое «Ходовая часть вагонов» в других словарях:

Ходовая часть транспортного средства — Содержание 1 Ходовая часть локомотива 1.1 Тележки электровоза 1.2 Тележки тепловоза … Википедия

Ходовая часть — Содержание 1 Ходовая часть локомотивов 1.1 Тележки электровозов 1.2 Тележки тепловозов … Википедия

Ходовая часть вагона — 28. Ходовая часть вагона Комплекс устройств, узлов и деталей всех типов вагонов, служащий опорой кузова вагона на рельсы и обеспечивающий его направленное движение по рельсовому пути Источник: СТ СЭВ 4860 84: Вагоны грузовые и их узлы. Термины и… … Словарь-справочник терминов нормативно-технической документации

монорельсовая дорога — транспортная система, в которой вагоны для пассажиров или грузовые вагонетки перемещаются по балке – монорельсу, укреплённому на опорах или эстакаде. Подвижной состав может передвигаться поверх балки (навесная система) или находиться под… … Энциклопедия техники

Поезд спутник — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

ЭС2 — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

Электропоезд ЭМ4 — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

ЭМ4 — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

Читайте также:  Амортизатор капота хендай терракан

ЭМ-4 — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

ЭМ4 «Спутник» — Электропоезд ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка В эксплуатации с 1962 Производитель Рижский вагоностроительный, Рижский электромашиностроительный, Калининский вагоностроительный Серия … Википедия

Источник

Рессорное подвешивание вагонов

1. Классификация и особенности конструкции рессорного подвешивания вагонов

Рессорное подвешивание является одним из важнейших элементов ходовых частей, от которого зависит плавность хода при движении вагона, в особенности при прохождении стыковых соединений и продольных неровностей рельсов, крестовин и др. В этих случаях происходит колебание подвижного состава и возникают динамические силы, действующие на элементы конструкции вагона, пассажиров и перевозимый груз. В целях обеспечения плавности хода, повышения безопасности движения поездов, создания комфортных условий для пассажиров, сохранения качеств грузов при перевозках применяют специальные устройства в ходовых частях вагонов — рессорное подвешивание.
Рессорное подвешивание состоит из упругих элементов, гасителей колебаний, возвращающих и стабилизирующих устройств. Комплекс этих элементов обеспечивает снижение ускорений колебательного движения и уменьшение воздействия динамических сил на конструкцию вагона, создавая плавный ход подвижного состава в процессе эксплуатации. При этом параметры рессорного подвешивания должны соответствовать нормативным значениям и не должны существенно изменяться с течением времени.

2. Упругие элементы рессорного подвешивания

Упругие элементы, являясь основной составной частью рессорного подвешивания, смягчают толчки и удары, действующие на движущийся вагон со стороны рельсового пути. У неподвижного вагона упругие элементы испытывают лишь воздействие статической нагрузки, прогибаясь на величину, называемую статическим прогибом. В качестве упругих элементов вагонов применяют витые стальные пружины, резиновые, пневматические, торсионные, тарельчатые, кольцевые и другие типы упругих элементов. В последнее время все большее распространение получают пневматические, резинометаллические, торсионные и другие типы рессор.
Пневматические рессоры, являющиеся наиболее прогрессивными упругими элементами ходовых частей, применяют в тележках пассажирских вагонов скоростных поездов. Основным преимуществом их перед другими типами упругих элементов является способность поддержания положения кузова на определенном уровне относительно головок рельсов независимо от величины нагрузки, что обеспечивается автоматическим регулированием давления воздуха внутри рессоры. Кроме того, они обладают хорошими вибро- и шумогасящими свойствами, что обеспечивает комфорт пассажирам. Пневматические рессоры имеют также меньшую массу. Однако они сложнее по конструкции и обслуживанию в эксплуатации, так как требуют наличия источника питания рессор воздухом, системы трубопроводов и арматуры. Получили распространение пневматические рессоры баллонного (рис. 3.23, а), диафрагменного (б) и смешанного (в) типов.

Наиболее широко из них применяются рессоры диафрагменного типа, так как они позволяют получать регулируемые характеристики вертикальной и горизонтальной жесткостей. На пневморессору опирается надрессорная балка 1 (рис. 3.23, б), которая соединяется с диафрагменным баллоном 2, прикрепленным к корпусу 3. Внутри рессоры имеется резиновый ограничитель 4, предусмотренный на случай резкого падения давления в системе или большой просадки надрессорной балки под действием динамических нагрузок.
Пневматические рессоры работают в системе пневматического подвешивания вагона. Схема такого подвешивания обычно состоит из пневматической рессоры 3 (рис. 3.24) с дополнительным резервуаром У, снабженным дросселем 2, регулятора положения кузова 4, трубопровода 5, главного резервуара 6 и компрессора 7. Работа такой системы заключается в следующем. Повышение нагрузки Р от кузова приведет к сжатию пневматической рессоры 3 и перемещению вниз золотника регулятора 4 так, что его отверстие б соединится с каналом а. В результате сжатый воздух из главного резервуара 6 поступит в пневматическую рессору 3 и приподнимет кузов на прежнюю высоту. Разгрузка кузова и уменьшение силы Р приведет к тому, что приподнимется вверх золотник и посредством его выточки в часть воздуха из пневматической рессоры удалится в атмосферу. В результате давление воздуха в пневматической рессоре уменьшится и кузов вагона опустится и займет прежнюю высоту, при которой все отверстия в золотнике будут перекрыты. Таким образом, подобная система пневматического подвешивания обеспечит автоматическое поддержание кузова на определенной высоте при изменении нагрузки, что необходимо для вагонов, имеющих повышенную гибкость рессорного подвешивания.

Резиновые и резинометаллические упругие элементы находят применение в тележках вагонов, так как они обладают хорошими амортизирующими свойствами, а также способностью гасить вибрационные и звуковые колебания. Однако недостаточно широкое их распространение объясняется свойствами резины, существенно влияющими на параметры подвешивания при различных климатических условиях и длительности эксплуатации. Резиновые элементы чаще всего используют в тележках отечественных вагонов в виде прокладок в буксовом подвешивании и скользунах для гашения высокочастотных колебаний и уменьшения шума, а также в шкворневых узлах тележек скоростных вагонов и вагонов электропоездов и дизель-поездов.
Торсионные рессоры применяют в системе подвешивания вагонов. Такая рессора представляет собой прямой стальной стержень (торсион) 4 (рис. 3.25, а), один конец которого закреплен в кронштейне 5, а другой жестко связан с рычагом 1, который шарнирно соединяется с обрессоренной частью вагона (надрессорная балка, например). Второй опорой служит подшипник 2, установленный в кронштейне 3, причем в подшипнике может быть создано необходимое трение, способствующее затуханию колебаний вагона. Кронштейны 5 и 3 могут быть укреплены на раме тележки. Торсион 4, изготавливаемый из специальной хромоникельмолибденовой термически обработанной стали, по концам крепится жестко, например с помощью шлицевых соединений.
Нагрузка Р на торсионную рессору вызывает поворачивание рычага 1, а следовательно, скручивание торсиона 4, вызывая упругие деформации кручения. Подобные торсионные устройства применяются в полувагонах отечественной постройки для облегчения поднимания крышек люков после разгрузки кузова: один конец торсиона прикреплен к крышке люка, а другой к рычагу, шарнирно связанному с хребтовой балкой рамы. Торсион при этом закручивается под действием силы тяжести высыпающегося груза, а после освобождения крышки от груза упруго деформированный торсион поднимет ее в горизонтальное положение. Торсионные рессоры получили распространение в некоторых тележках вагонов зарубежных стран.

Тарельчатая рессора (рис. 3.25, б) состоит из набора упругих стальных тарелей, имеющих вид усеченного конуса с углом подъема у и высотой h, соединенных в секции по две, четыре и т.д. штук в каждой. В результате действия силы Р тарели распрямляются и угол у уменьшается. При этом рессора получает прогиб, смягчая ударную нагрузку. Тарельчатые рессоры в вагоностроении применяются редко.
Кольцевая рессора (рис. 3.25, в) состоит из наружных 1 и внутренних 2 стальных колец, опирающихся друг на друга своими конусными поверхностями. Под действием нагрузки Р рессора прогибается вследствие упругих деформаций растяжения наружных и сжатия внутренних колец, так как на конусных их поверхностях возникают значительные поперечные силы. Кольцевые рессоры обладают очень высокой амортизационной способностью, достигающей 60—70% работы, т.е. могут воспринимать большие нагрузки и применяться в рессорном подвешивании тяжеловесных вагонов и ударно-тяговых приборах.
Витые пружины. В ходовых частях современных вагонов наибольшее распространение получили витые цилиндрические пружины (рис. 3.26, а), которые по сравнению с применяемыми ранее листовыми рессорами позволяют получать необходимые упругие характеристики при меньших массах и габаритных размерах, а в сочетании с гасителями колебаний обеспечивать более спокойный ход вагона. Кроме того, пружины могут смягчать горизонтальные толчки и удары, что не могут листовые рессоры; пружины также гораздо проще в изготовлении и ремонте, чем листовые рессоры. В силу своих преимуществ цилиндрические пружины почти вытеснили широко применяемые ранее листовые рессоры.
Конические пружины (рис. 3.26, б) имеют более благоприятную силовую характеристику, но сложны в изготовлении и ремонте. Поэтому они не нашли широкого распространения в вагоностроении.

3. Гасители колебаний

При движении вагона по периодическим неровностям пути (стыкам рельсов, например) со скоростью, когда частоты вынужденных и собственных колебаний близки по величине, могут возникать большие амплитуды колебаний кузова на рессорах (резонанс), если в системе рессорного подвешивания отсутствуют или малы силы сопротивления. Поэтому для гашения резонансных колебаний в систему рессорного подвешивания вводят специальные гасители, которые позволяют снизить амплитуды и ускорения колебательного движения, а следовательно, уменьшить воздействие динамических сил на элементы вагона и перевозимый груз. Многочисленные разновидности конструкций гасителей колебаний, применяемых в подвижном составе железных дорог, можно объединить в две большие группы: фрикционные и вязкого сопротивления. Рассмотрим некоторые из них.
Фрикционные гасители колебаний наиболее широко применяются в тележках грузовых вагонов.
В двухосных тележках типа ЦНИИ-ХЗ фрикционный гаситель колебаний состоит из двух фрикционных клиньев 2 (рис. 3.27, а), размещенных между наклонными поверхностями концов надрессорной балки 1 и фрикционными планками 5, укрепленными на колонках 4 боковой рамы тележки. Клинья опираются на двухрядные цилиндрические пружины 5.Работа таких гасителей заключается в следующем. При вертикальных колебаниях надрессорной балки 1 совместно с обрессоренными массами вагона фрикционные клинья 2 перемещаются вниз и вверх относительно фрикционных планок 3. В результате между клиньями и планками возникают силы трения, создающие сопротивление колебательному движению. При этом величина силы трения прямо пропорциональна прогибу пружин и возрастает с его увеличением, так как клинья прижимаются с большей силой. Работа сил трения преобразуется в тепловую энергию, которая рассеивается в окружающую среду. Такого типа гаситель называют фрикционным с переменной силой трения, зависящей от прогиба.

Читайте также:  Амортизаторы капота на сузуки гранд витара в новосибирске

Фрикционный гаситель колебаний с постоянной силой трения, показанный на рис. 3.27, б, устроен так, что сила трения не зависит от прогиба рессорного подвешивания. В пазах 5 концов надрессорной балки установлены башмаки 2, в которых размещены стаканы 3 с пружинами 4. Стакан 3 прижат предварительно сжатой пружиной 4 к фрикционной планке 1 боковой рамы тележки. Сила трения, возникающая при колебании надрессорной балки совместно с опирающимися на нее частями, постоянна и зависит только от жесткости и величины предварительного сжатия пружины, а также коэффициента трения между взаимодействующих плоскостей стаканов и фрикционных планок.
Фрикционный гаситель колебаний, применяемый в трехосных тележках типа УВЗ-9М (рис. 3.27, в), создает силы трения, пропорциональные прогибу рессорного подвешивания. Нагрузка от надрессорной балки тележки через прокладку 1 и нажимной конус 2 передается на два раздвигающихся клина 3. При деформациях рессорного подвешивания под действием скошенных поверхностей нажимного конуса 2 раздвижные клинья 3 прижимаются к внутренней поверхности фрикционного стакана 6. Между трущимися поверхностями раздвижных клиньев 3 и стакана 6 при их взаимном перемещении возникают силы трения, пропорциональные прогибу пружины 5, размещенной между фланцем стакана 6 и опорным кольцом 4.
К гасителям колебаний с постоянной силой трения относится дисковый фрикционный гаситель (рис. 3.28, а), конструкция которого состоит из стального диска 6, зажатого между двумя фрикционными прокладками 2 с помощью пружины 7, болта 4, поводков 3 и резиновых прокладок 5. Рычаги 1 и 3 с помощью валиков крепят между опорами упругих элементов. При колебании вагона и относительном угловом перемещении рычагов 1 и 8, а следовательно диска 6 и прокладок 2, между ними возникают силы трения постоянной величины. Эти силы можно регулировать величиной сжатия пружины 7 с помощью гаек болта 4.
Телескопический фрикционный гаситель колебаний фирмы Крайслер (рис. 3.28, б) является гасителем с постоянной силой трения и применяется в тележках грузовых и пассажирских вагонов зарубежных стран. Он состоит из башмаков 2 с фрикционными накладками 5, выполненными из асбестовой массы, которые прижимаются к корпусу 6 с помощью усилия пружины 4, воздействующей на конусные (клиновые) головку 1 и шайбу 3. Сила трения такого гасителя регулируется гайками 7, сжимающими пружину 4.

Телескопический гаситель колебаний типа БИТМ (Брянский институт транспортного машиностроения) (рис. 3.28, в) отличается от гасителя фирмы Крайслер тем, что усилия на главные трущиеся поверхности передаются через эластичные прокладки 1 и 2 без вспомогательных клиновых поверхностей. Изменением толщины этих прокладок и усилием сжатия пружины можно регулировать соотношение сил трения при возвратно-поступательном движении частей гасителя относительно корпуса. Гаситель колебаний типа БИТМ обладает большей стабильностью по сравнению с гасителем фирмы Крайслер, поскольку усилия на главные трущиеся поверхности передаются через упругие элементы.
Телескопические гасители колебаний устанавливаются как вертикально, так и наклонно относительно оси упругих элементов подвешивания. При наклонном их расположении гасятся вертикальные и горизонтальные колебания вагона. Важным преимуществом телескопических гасителей является простота и быстрота замены неисправного гасителя исправным.
Гидравлические гасители колебаний. Как отмечалось выше, существенным недостатком фрикционных гасителей колебаний является нестабильность их работы, т.е. ухудшение силовой характеристики. Эти и другие недостатки устранены в гасителях колебаний гидравлического типа и других гасителях вязкого сопротивления, которые, несмотря на усложнение изготовления, ремонта и технического обслуживания, широко применяются в тележках современных пассажирских вагонов.
В телескопических поршневых гидравлических гасителях колебаний сила сопротивления создается за счет перетекания жидкости из одной полости в другую через узкие калиброванные (дроссельные) отверстия. Сила сопротивления гасителя в этом случае зависит от вязкости жидкости, размеров дроссельных отверстий и пропорциональна скорости перемещения поршня.
Силовую характеристику в этих конструкциях создают на основе требований к ходовым качествам вагона путем подбора вязкости жидкости и размеров дроссельных отверстий.
Гидравлический гаситель колебаний (рис. 3.29) состоит из рабочего цилиндра 4, поршня 6 со штоком 1, неподвижного поршня 9 с отверстием 14, верхнего 7 и нижнего 8 клапанов, корпуса 3 и направляющей втулки 2. Между цилиндром 4 и корпусом 3 образуется резервуар 5. Гаситель заполнен вязкой жидкостью, которая подбирается с таким расчетом, чтобы в летнее и зимнее время ее вязкость изменялась незначительно.

Работа гидравлического гасителя колебаний заключается в следующем. При движении поршня 6 вниз (ход сжатия) верхний клапан 7 приподнимается и жидкость из подпоршневой полости цилиндра 4 перетекает в надпоршневую 12 через большие отверстия 11. Одновременно вследствие движения штока 1 вниз давление под поршнем 6 повышается и часть жидкости с сопротивлением перетекает из полости 10 через дроссельное отверстие клапана 8 в резервуар 5.
В это время давление жидкости в надпоршневой 12 и подпоршневой 10 полостях цилиндра 4 выравнивается, так как полости 10 и 12 соединены между собой через большие отверстия 11 поршня и приподнятого вверх клапана 6. При движении поршня 6 вверх (ход растяжения) верхний клапан 7 закрывается под действием повышенного давления в надпоршневой полости 12 и жидкость с сопротивлением перетекает через дроссельные каналы в подпоршневую полость 10. Одновременно в полости 10 наступает разрежение, вследствие чего нижний клапан 5 поднимается и пропускает жидкость из резервуара 5 в подпоршневую полость 10, восполняя недостающий объем жидкости, поступающий из меньшего надпоршневого пространства, включающего объем штока 1. Резервуар 5 гасителя служит для размещения объема жидкости, вытесняемой штоком 1 из цилиндра при движении поршня 6 вниз, а также является сборником жидкости, просачивающейся через кольцевой зазор между штоком и направляющей втулкой 2. Для предотвращения выдавливания жидкости наружу гаситель имеет уплотнение 13.

4. Возвращающие и стабилизирующие устройства

В тележках вагонов применяют возвращающие устройства, которые служат одновременно для смягчения боковых толчков, возникающих вследствие набегания гребней колес при извилистом движении колесных пар на прямых участках пути и при входе вагона в кривые, а также для возвращения отклоненного кузова под действием поперечных сил в среднее положение.
Возвращающие устройства, применяемые в тележках вагонов, бывают двух типов, различающиеся по принципу действия и конструктивному выполнению. К первому типу относятся устройства, возвращающая сила которых создается за счет использования силы тяжести кузова, воздействующего на тележку. К подобным устройствам относятся конструкции, имеющие ролики (катки), размещенные между наклонными плоскостями (рис. 3.30, а).
При поперечном отклонении тележки относительно кузова возникает возвращающая сила Н, не зависящая от величины отклонения тележки. Если же ролики (катки) вместо наклонных плоскостей разместить в овальных (цилиндрических или выполненных по особому профилю) углублениях (система В.И. Бабина), то возвращающая сила Н будет возрастать по определенному закону с увеличением поперечных отклонений тележки в связи с ростом угла а от нуля (среднее положение) до максимального значения (максимальное отклонение тележки).
К первому типу, в котором возвращающая сила создается за счет использования силы тяжести кузова, относится также люлечное подвешивание (рис. 3.30, б). При горизонтальном отклонении надрессорной балки 4, расположенной на упругих элементах 3, произойдет изменение наклона люлечных подвесок 2, что и вызовет появление горизонтального возвращающего усилия.

Люльки бывают с вертикальными и наклонными подвесками 2. Вертикальные люлечные подвески при отклонении остаются параллельными между собой, а подрессорная балка при этом остается параллельной первоначальному положению. В случае наклонных люлечных подвесок 2 создается большая величина возвращающей силы, зависящая от первоначального угла их наклона, но при этом происходит нежелательный наклон подрессорной балки 7, а иногда перекос и кручение кузова вагона.
Во втором типе возвращающего устройства возвращающая сила обеспечивается за счет использования поперечной упругости упругих элементов рессорного подвешивания. В современных тележках грузовых вагонов, например, функции возвращающих устройств выполняют пружины, возвращающая сила которых пропорциональна величине их горизонтальной упругой деформации. В тележках пассажирских вагонов роль возвращающих устройств совместно с люлькой выполняют упругие поводки, а также пневматические и другие типы упругих элементов подвешивания.
Одной из важнейших мер для улучшения плавности хода вагона в вертикальном направлении является увеличение гибкости рессорного подвешивания. Однако при этом возрастает боковая качка кузова и ухудшение поперечной устойчивости вагона. В этом случае применяют особые устройства — стабилизаторы, которые обеспечивают упругое сопротивление только крену кузова и позволяют значительно увеличить суммарный статический прогиб рессорного подвешивания вагона. В подвешивании могут быть использованы рычажные, торсионные и другие типы стабилизаторов боковой качки вагонов.
Рычажный стабилизатор (рис. 3.31, а) включает в себя два равноплечих рычага 3 и 6, прикрепленных шарнирами 5 к надрессорной балке 7. Своими концами 2 рычаги 3 опираются на люлечные подвески 7, а противоположные концы рычагов с помощью валиков соединены между собой серьгами 4. Такое устройство противодействует наклону надрессорной балки тележки и препятствует боковой качке кузова, не влияя на вертикальные перемещения.

Торсионный стабилизатор (рис. 3.31, б) состоит из двух торсионов 2, свободно вращающихся в подшипниках 1, прикрепленных к раме тележки 6. Надрессорная балка 5 шарнирно соединена подвесками 5 с изогнутыми концами 4 торсионных стержней. Такое стабилизирующее устройство обеспечивает восстанавливающие моменты от скручивания торсионов при боковом отклонении кузова и противодействует его наклону.

Источник

Правильные рекомендации
Adblock
detector