Амортизатор в организме человека это

Мочегонные препараты: что это, список самых лучших лекарственных средств

Диуретики: что это такое

Диуретики представляют собой лекарственные препараты, ускоряющие формирование мочи и ее ликвидацию из организма.

Подобные средства назначают преимущественно для борьбы с отечностью тканей на фоне заболеваний сердечно-сосудистой системы, почек и печени, а также для лечения тяжелых патологических состояний, которые требуют быстрого снижения жидкости.

Все диуретические средства различаются по механизму действия мочегонного эффекта. Фармакологическое свойство препаратов заключается в воздействии на эпителий почечных канальцев, где и происходит образование мочи.

Помимо этого, некоторые лекарства влияют на некоторые ферментные и гормональные вещества, которые отвечают на нормальную работу почек.

Показания мочегонных средств

Главными показаниям к приему мочегонных препаратов выступают следующие состояния:

​Устранение отечности клеток и тканей в результате различной степени недостаточности сердца и сосудистых заболеваний.

​Нормализация высокого артериального давления.

​Выведение из организма токсических и прочих вредных веществ вследствие отравления.

Отеки являются основным симптомом патологических состояний сердца, сосудов и нарушения функции выделительной системы. Скопление жидкости связано с задержкой высокого количества натрия. Механизм действия мочегонных препаратов именно и заключается в том, что выводит из организма натрий, тем самым устранять отечность.

При высоком уровне давления повышенное содержание натрия негативно влияет на тонус кровеносных сосудов, приводя к их сужению. Поэтому прием диуретиков выводит данный элемент из организма, увеличивая просвет сосудов и приводит в норму показатель АД.

Вследствие отравления, определенный объем токсинов и вредных соединений снижается в процессе работы почек. Однако, чтобы ускорить их выведение, больным обязательно прописывают мочегонные средства. Сначала пациентам проводят внутривенную инфузию лекарственных растворов, а после вводят диуретики, которые одновременно вместе с жидкостью ликвидируют из организма токсические вещества.

Противопоказания препаратов

Применение диуретиков не всегда целесообразно. Существуют определенные состояния, которые запрещают использование подобного рода лекарственных средств. К ним относят:

​Низкий уровень калия в крови.

​Индивидуальная непереносимость сульфанидамидных веществ.

​Тяжелая форма недостаточности дыхательной системы.

​Острые заболевания почек.

​Любой тип сахарного диабета.

Неявным противопоказанием к приему мочегонных средств выступает желудочковая аритмия. При таком клиническом состоянии требуется коррекция терапевтической дозы и строгий контроль врача.

Мочегонные таблетки при отеках

Для борьбы с отечностью самыми действенными препаратами являются:

Все лекарственные средства имеют противопоказания, поэтому принять нужно по назначению специалиста.

Мочегонные таблетки для похудения

Прием диуретиков положительно сказывается на потере веса. Это объясняется снижением лишней жидкости в организме, ускорением метаболизма и уменьшением аппетита. Однако принимать лекарства стоит осторожно, чтобы исключить побочные явления. Поэтому предварительно стоит проконсультироваться с врачом.

Список эффективных мочегонных препаратов для похудения:

Самые популярные диуретики

Эффективными мочегонными препаратами в борьбе с отечностью при различных заболеваниях являются:

​Тиазиподобные средства. Оказывают прямое действие на функцию почечных канальцев. Они препятствуют обратному проникновению хлора и натрия в организм. К ним относят Метиклотиазид, Циклометиазид, Бендрофлуметиозид.

Все представленные на сайте материалы предназначены исключительно для образовательных целей и не предназначены для медицинских консультаций, диагностики или лечения. Администрация сайта, редакторы и авторы статей не несут ответственности за любые последствия и убытки, которые могут возникнуть при использовании материалов сайта.

Источник

Мутация в организме помогает людям не бояться холода. Как это работает?

Многие люди мерзнут даже при плюсовой температуре воздуха, в то время как другие не испытывают особого дискомфорта даже в холодные зимние вечера. По мнению шведских ученых, это связано с генетической мутацией, которая помогает некоторым людям дольше сохранять тепло внутри своего тела. Чтобы доказать это, недавно они провели эксперимент с участием 42 мужчин, которых попросили посидеть в холодной воде до тех пор, пока температура их тела не опустится до 35,5 градусов. Во время погружения в воду у них были взяты анализы и оказалось, что устойчивые к холоду люди действительно являются мутантами. Звучит интересно и это явно важное для научного сообщества открытие. Поэтому предлагаю разобраться, о какой именно мутации идет речь.

На фото — голландец Вим Хоф, который не боится холода

Почему людям холодно?

Большую роль в сохранении тепла в человеческом организме играют мышцы. Они состоят из быстро сокращающихся белых волокон и медленно сокращающихся красных волокон. Белые волокна утомляются быстро, а красные обладают большей выносливостью. В белых волокнах содержится белок α-актинин-3, причем у одних людей его больше, а в другом — меньше. По расчетам исследователей, нехватку этого белка испытывает примерно 20% населения нашей планеты, то есть около 1,5 миллиарда человек. И связано это с мутацией в генах, которые отвечают за выработку белка.

Гены влияют на нашу способность сохранять тепло

По словам автора научной работы Хоакина Вестербланда (Hakan Westerblad), люди с недостатком белка α-актинин-3 лучше сохраняют тепло и легче переносят холодный климат. Мутация, которая привела к выработке меньшего количества белка, возникла во времена переселения людей из теплой Африки в более холодные области нашей планеты. Обо всем этом ученым известно давно, только вот экспериментальных доказательств не было. Ученые из Швеции решили восполнить этот пробел.

Влияние генов на человека

В проведенном ими эксперименте приняли участие 42 мужчины в возрасте от 18 до 40 лет. Исследователи попросили их посидеть 14-градусной воде, пока температура их тела не опустится до 35,5 градусов. Во время погружения ученые взял у них биопсию мышц, которая позволила им измерить уровень содержания белка α-актинин-3. В результате выяснилось, что люди с недостатком этого белка действительно дольше сохраняют тепло внутри своего организма. Достигается это за счет активации медленно сокращающихся красных волокон, которые производят больше тепла, чем быстрые волокна.

Читайте также:  Волга амортизатор фенокс отзыв

Мышцы помогают нам сохранять тепло внутри организма

Биопсия — это метод исследования, при котором у живого человека берется образец ткани для дальнейшего изучения в лабораторных условиях. В этом случае ученые взяли образцы мышечных тканей, чтобы узнать их состав.

По мнению исследователей, когда-то давно мутация в генах помогла людям быстрее привыкнуть к суровым условиям центральной и северной Европы. Сейчас у людей есть теплая одежда, поэтому в способности сохранять тепло нет особой пользы. Возможно, именно поэтому у некоторых людей эта мутация не наблюдается. Но зато недостаток белка α-актинин-3 меняет реакцию организма на физические упражнения. Как правило, люди с его недостатком хорошо справляются с упражнениями на выносливость. А вот виды спорта, требующие физической силы, для них не очень подходят.

А вы знаете, почему нам больно от горячего и холодного? Ответ читайте по этой ссылке.

Как пройти тест на предрасположенность к спорту?

Узнать, имеется ли у человека недостаток белка α-актинин-3, можно сдав специальные анализы. Такую услугу предоставляют частные медицинские центры с лабораторной диагностикой. Обычно анализы сдаются для того, чтобы выявить у человека генетическую предрасположенность к тому или иному виду спорта. В ходе процедуры у человека берут венозную кровь и мазок с внутренней стороны щеки. Результаты готовятся в течение 10 дней. Стоимость анализа на белок α-актинин-3 везде разная. Если верить источникам, цена колеблется в районе 1000 рублей. Не так уж и дорого, если учесть, что благодаря этому можно узнать о себе очень даже интересную информацию.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Высокий показатель белка α-актинин-3 может быть признаком того, что человек может преуспеть в беговых видах спорта. В организмах некоторых людей имеются и другие мутации, которые могут наделить их сверхчеловеческими способностями. Например, некоторые гены могут спасти от переломов, а другие — дать человеку защиту от некоторых ядов. Подробнее об этих мутациях можно почитать по этой ссылке.

Источник

Чем вреден вейп (электронные сигареты) для здоровья человека

Производители вейпов заявляют, что их продукция совершенно безопасна для организма. Но, в действительности, электронные сигареты представляют такой же вред для здоровья, как и обычные.

Вейпы начали свое «шествие» по планете в начале двухтысячных годов и позиционировались как безопасная замена сигарет. В России они обрели популярность после принятия в 2013 году антитабачного закона, запрещающего курение в общественных местах.

Но, вероятнее всего, вейпы ждет та же судьба, что и обычные сигареты. Роспотребнадзор и Минздрав призывают внести поправки в законодательство о регулировании применения электронных сигарет и запрете их курения в общественных местах. Подобный проект уже лежит на рассмотрении в Правительстве страны.

Доказанный вред

Производители утверждают, что в сигаретах используется совершенно безопасное вещество, аналогичное чистому водяному пару. Но это не так. Попробуем выяснить, чем вреден вейп для здоровья человека, изучив его состав.

Исследования показали, что аэрозоль содержит никотин (не всегда), глицерин, ароматизирующие компоненты, пропиленгликоль, ацетальдегид, формальдегид и другие канцерогенные (провоцирующие образование злокачественных опухолей) вещества.

Пропиленгликоль используется при производстве продуктов бытовой химии. Попадая в организм, он поражает почки и головной мозг, нарушая их функционирование.

Природный никотин в вейпах заменен химическим, что представляет еще большую опасность организма.

В число химических заменителей входит сульфат никотина. Ранее он использовался как пестицид для уничтожения вредителей сельского хозяйства и борьбы с болезнями растений, но был запрещен из-за повышенной токсичности.

Чем вреден вейп для здоровья человека, если в его составе отсутствует никотин? Ароматизаторы, содержащиеся в аэрозоле, проникают в легкие и повреждают их на клеточном уровне. Воздействие оказывает накопительный эффект и со временем провоцирует развитие пневмонии, астмы, застойной сердечно-сосудистой недостаточности. К тому же даже чистый пар, постоянно воздействуя на слизистые оболочки, наносит им выраженный вред.

Пассивное курение

ВОЗ предупреждает, что люди, которые находятся возле вейперов, также подвергаются негативному воздействию курительных аэрозолей. Правда, масштабы вреда пока еще не изучены.

Риск взрыва

В мире, в том числе и в России, зафиксировано несколько инцидентов, когда электронная сигарета взрывалась во рту курящего.

57-летний житель Флориды в результате взрыва остался без языка, 17-летнему московскому школьнику выбило зубы, разворотило губы и челюсти: ему пришлось вставлять зубы и делать пластическую операцию. Но этим курильщикам еще «повезло»: 24-летнего американца курение лишило жизни – вейп разорвался и перерезал сонную артерию.

Сильный аллерген

Отсутствие контроля

Производство, ввоз, продажи и использование вейпов никто не контролирует. Поэтому узнать точный состав аэрозоля и дозировку компонентов невозможно. Даже, если на упаковке указано, что никотин отсутствует либо его содержание низкое, нет гарантии, что это действительно так.

Поможет ли вейп бросить курить?

Многие люди покупают электронные сигареты, чтобы отказаться от обычных, а со временем совсем бросить курить. Но это только миф. Прежде всего, вейпы сами являются причиной никотиновой зависимости, правда, менее выраженной. К тому же большинство курильщиков даже через год одновременно с электронными сигаретами продолжают курить обычные.

Источник

Основные закономерности метаболических процессов в организме человека. Часть 2.

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

Читайте также:  Антифриз в акпп вольво

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

2. Частично заменимые

3. Условно заменимые

4. Заменимые

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

3. Минорные липиды.

4. Стероиды.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Читайте также:  Антифриз лукойл g12 официальный сайт

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Источник

Амортизаторы для фитнеса: обзор

С помощью этого универсального фитнес-инвентаря можно усложнить, кажется, любое базовое упражнение. Какие амортизаторы годятся для группового, персонального и домашнего тренинга, выясняем у Олеси Горковенко, супервайзера и элит-тренера групповых программ в клубе World Class Город Столиц.

«Большой плюс амортизаторов — в том, что они подходят абсолютно всем, — рассказывает Олеся. — Так как упражнения с ними не предполагают осевой нагрузки, они совершенно нетравмоопасны, наоборот, снимают напряжение с суставов, позвоночника, позволяют научиться лучше контролировать свое тело».

Какой амортизатор выбрать?

Трубчатый амортизатор Body Tube, Dittmann

«Этот универсальный, удобный и прочный амортизатор с ручками мы используем на групповых программах, в числе которых Make Body, L.A.B., Les Mills CXWORX, Les Mills Barre, Torso. Разные по натяжению амортизаторы представлены в разных цветах: новичкам подойдут желтые, более “продвинутым” пользователям — зеленые, затем следуют красные и, наконец, самые сильные по натяжению синие. Трубчатые амортизаторы применяются практически во всех тренировках и задействуют все большие мышечные группы — ног, рук, спины. Их можно держать за ручки или складывать вдвое. Их универсальность еще и в том, что они подходят не только для группового, но и для персонального и домашнего тренинга».

Трубчатый амортизатор с манжетами Ankle Tube, Dittmann

«Этот амортизатор мы используем в разминке и силовых групповых классах, только в упражнениях на нижнюю часть тела, ноги. Ankle Tube качественные, безопасные, надежно фиксируются на ногах, при этом комфортны и не пережимают кожу во время выполнения упражнений. С их помощью можно выполнять очень классные упражнения на бедра и ягодицы, даже при простых базовых шагах аэробики нагрузка существенно увеличивается. Модели с разным сопротивлением, как и у Body Tube, позволяют варьировать уровень нагрузки».

Латексные фитнес-ленты, Rakamakafit

«Эти ленты, также отличающиеся натяжением, используют, как правило, в домашних и персональных тренировках в тренажерном зале. С их помощью можно отлично укрепить мышцы, выполняя базовые виды упражнений на все мышечные группы. Это и шаги, и приседания, и выпады, и проработка плеч, бицепса, трицепса, всевозможные тяги, подключающие мышцы спины, так называемый ягодичный мост. Это больше индивидуальная история потому, что зачастую во время упражнений такая лента cкручивается, доставляя коже дискомфорт, и ее надо постоянно поправлять. На групповых программах же главное — непрерывность, и если терять время на поправление ленты, теряется нагрузка, а за ней и смысл тренировки».

Тканевые фитнес-ленты, Rakamakafit

«Широкие тканевые ленты используют в домашнем, персональном тренинге, а также в растяжке и реабилитации. Так, с их помощью можно, например, увеличить подвижность плечевых суставов. Они не всегда удобны, так как у них нет ручек, однако очень прочны и при выполнении упражнений не скручиваются».

Источник

Правильные рекомендации
Adblock
detector