Биологические антифризы у пойкилотермных животных

20. Пойкилотермия. Температура тела при пойкилотермии. Метаболизм и интенсивность жизнедеятельности. Механизмы температурной адаптации. Элементы терморегуляции. Адаптивное поведение

По отношению к температуре живые организмы делятся на несколько экологических групп.

Виды, которые имеют оптимум жизнедеятельности в области высоких температур, относятся к группе термофилов. Термофилия характерна для многих групп микроорганизмов, нематод, личинок насекомых, клещей и других организмов, обитающих в аридных областях, в разлагающихся органических остатках и т.д.

Хорошо известна классификация организмов на:

У пойкилотермных (эктотермы) организмов общая адаптация к температурным условиям основывается на изменение тканевой устойчивости, связанной с термостабильностью белков и температурными зависимостями ферментных систем. Известно, что теплоустойчивость клеток морских беспозвоночных тесно коррелирует с их вертикальным распределением и наибольшего значения достигает у видов, обитающих в сублиторальной зоне. В тканях форели содержится два фермента изоэнзима холинэстеразы, имеющих разные температурные оптимумы. Это изоэнзимы I и II с максимумом активности соответственно при более низких и более высоких температурах. У рыб, обитающих при температуре воды 12º С, имеются оба изоэнзима, при 2º С преимущественно синтезируется изофермент I, а при 17º С – изофермент II.

Многие виды беспозвоночных и позвоночных животных, обитающие при низких температурах, характеризуются низкими значениями точки замерзания внутриклеточных и внутриполостных жидкостей. Отрицательные температуры легко переносятся ими вследствие накопления в жидкостях тела биологических антифризов. У насекомых в качестве такого антифриза чаще всего присутствует глицерин. Зимующие стадии некоторых насекомых за счет высокого содержания глицерина в гемолимфе и тканях способны переносить промерзания до – 40º С и даже ниже. Помимо глицерина в качестве криопротекторов животные используют и другие вещества:

В тканях расписных черепах во время зимовки обнаружены высокие концентрации глюкозы, глицерола и таурина.

Адаптация к температурам у пойкилотермных животных сопровождается компенсаторными изменениями уровня обмена веществ. При акклимации животных к низким температурам уровень их метаболизма становится выше, чем у содержащихся при более высокой температуре. Об этом свидетельствуют многочисленные данные по интенсивности дыхания различных групп пойкилотермных животных, акклимированных к различным температурам. Биологический смысл температурной компенсации состоит в стабилизации обменных процессов при изменении температуры тканей, что нормализует жизнедеятельность эктотермов в различных температурных режимах. Так, у рыб, обитающих в различных климатических зонах, независимо от температуры воды, различия в скорости метаболических процессов невелики и вполне соизмеримы. В свою очередь, это позволяет арктическим видам при низких и даже отрицательных (–2º С) температурах вести активный образ жизни.

Даже у пойкилотермных животных наблюдается формирование элементов терморегуляции. Многие виды насекомых для разогревания тела используют тепло, образующее при мышечной работе. В утренние часы при низких температурах шмели включают в работу грудные мышцы, за счет быстрого сокращения которых температура грудного отдела возрастает до 40º С. Предполетный термогенез известен для бражников, пчел, крупных жуков, саранчовых. Во время активного плавания температура тела тунцов на 10-15º С выше температуры воды. Некоторые виды змей за счет мышечного теплообразования стабилизируют температуру в кладках яиц. Самка питона в течение инкубации яиц поддерживает температуру тела на уровне 31º С. Многие виды рептилий обладают способностью в одних и тех же диапазонах температур нагреваться быстрее, чем охлаждаться. Например, галапагосская морская игуана нагревается в два раза быстрее, чем охлаждается. Это достигается изменением кровотока в кожных сосудах – расширение сосудов при нагревании и сужение при охлаждении. Этот механизм терморегуляции используется многими животными при адаптивном поведении для выбора наиболее обогреваемых участков и при смене поз. За счет перечисленных механизмов терморегуляции пойкилотермные животные приобретают относительную независимость от температуры окружающей среды и их можно отнести к гетеротермным организмам.

В условиях высоких температур включаются адаптационные механизмы, снижающие температуру тела. У многих рептилий в жаркие полуденные часы наблюдается тепловая одышка. Усиление вентиляции ротовой полости и верхних дыхательных путей, наряду с увеличением слюноотделения, способствует усилению теплоотдачи. Насекомые достаточно эффективно регулируют температуру тела за счет дыхалец.

Итак, у пойкилотермных организмов приспособления к температуре наблюдаются на клеточно-тканевом уровне и проявляются в изменении оптимума активности ферментов (изоферменты), а также изменением теплоустойчивости тканей. Приспособление к конкретным температурам проявляются и в виде поведенческих реакций.

Уважаемые друзья биологи!

Данный сайт я создавал не для заработка. Я на нем не размещаю никакой рекламы и делаю это не из-за этических соображений, а просто потому что биология пока тема не особо доходная. К тому же у меня есть другие проекты на которых я хорошо зарабатываю.

Наверное у вас возник вопрос, а зачем вообще мне все это нужно?

Я еще не так давно учился на биофаке и конечно же возлагал надежды на то, что после окончания буду работать по специальности и заниматься научно исследовательской работой. Однако в аспирантуру не поступил и работу биологом по специальности, которая нормально оплачивается не нашел. После провала вступительных экзаменов в аспирантуру я пошел получать второе высшее образование и теперь занимаюсь программированием.

На данный момент биология это моё хобби. Данный сайт можно назвать сайтом для своих. Если у вас есть идеи о том, как сделать данный проект более серьезным и более полезным вы можете написать мне.

Источник

У пойкилотермных организмов

Главным источником тепла у пойкилотермных является внешнее тепло. Однако полное соответствие температуры тела и среды наблюдается редко.

Когда температура среды низкая или умеренная, то температура тела пойкилотермных выше, чем температура среды. Это происходит потому, что даже при низком уровне метаболизма у этих животных вырабатывается эндогенное тепло, которое повышает температуру тела, особенно у тех организмов, которые активно двигаются.

В очень жарких условиях температура тела у этих организмов ниже, чем температура среды, так как при высокой температуре увеличивается испарение, а вместе с ним потеря тепла.

Скорость отдачи тепла зависит от соотношения массы и поверхности тела. У более крупных организмов это соотношение таково, что относительная поверхность тела уменьшается, а вместе с этим уменьшается и потеря тепла.

Например, у крупных черепах, обитающих в холодных водах, температура в глубине тела на 18ºС выше температуры воды.

Влияние температуры на развитие пойкилотермных

Развитие пойкилотермных организмов происходит тем быстрее, чем выше температура среды.

Минимальная температура, при которой возможны процессы развития, называется биологическим нулем развития (t).

Температура выше биологического нуля развития называется эффективной температурой (t – t).

Термальная константа развития (К) выражается формулой:

где Т – продолжительность развития, (t – t) – эффективная температура.

Например, у икры форели биологическим нулем развития является температура +2ºС. При такой температуре развитие продолжается 205 суток, при +5ºС развитие ускоряется и продолжается всего 82 суток (+5ºС – эффективная температура). При +10ºС развитие форели происходит в течение всего 41 суток.

Однако зависимость скорости развития пойкилотермных организмов от температуры не является линейной: при определенной степени повышения температуры развитие начинает замедляться.

Биологический нуль развития и сумма эффективных температур, необходимая для развития, являются различными для разных видов.

Оптимальные температуры развития соответствуют средним температурам той местности, где обитает данный вид.

Для каждого вида пойкилотермных организмов существует свой диапазон температур, в пределах которого сохраняется активная жизнедеятельность.

Когда температура выходит за границы этого диапазона (т.е. повышается или понижается), пойкилотермные организмы переходят в состояние оцепенения. При этом резко снижается скорость обменных процессов. Иногда уровень метаболизма бывает понижен настолько, что организмы не подают видимых признаков жизни.

Оцепенение является адаптивной реакцией: в таком состоянии организмы могут переносить выраженное повышение или понижение температуры тела без патологических последствий и выжить в крайне неблагоприятных температурных условиях.

Оцепенение связано со сложными физиологическими и биохимическими изменениями в организме.

Однако даже в состоянии оцепенения возможности адаптации не безграничны. При переходе температуры среды за границы толерантности наступает гибель организмов.

Механизмы адаптации к температуре у пойкилотермных организмов

У пойкилотермных организмов существуют как общие принципы температурных адаптаций, так и частные, связанные с особенностями климата, в котором они обитают. Виды, обитающие в холодном климате, лучше адаптируются к низким температурам, а обитатели жарких регионов – к высоким.

Адаптации к высоким температурам основаны на следующих принципах:

1. Термостабильность белков, в частности, ферментов. Это видовое свойство, которое формировалось в процессе эволюции в определенных температурных условиях.

2. Обезвоживание тканей. Чем ниже содержание в клетке воды, тем более высокие температуры она может перенести без повреждения (сухая плазма выдерживает колебания температуры от – 273 до + 170ºС).

Читайте также:  Дефектовка и ремонт мкпп

3. Понижение уровня метаболизма. При пониженном уровне обмена веществ снижается выработка энергии, а, следовательно, и тепла. Таким образом, путем устранения избытка эндогенного тепла организм защищается от перегрева.

4. Испарение. Растения регулируют испарение активными реакциями устьиц. Насекомые – открыванием и закрыванием дыхалец, рептилии – возрастанием частоты дыхательных движений, черепахи – испарением слюны, а также обрызгиванием мочой кожи задних конечностей.

Адаптации к низким температурам основаны на следующих принципах:

2. Повышение уровня метаболизма. При этом повышается выработка эндогенного тепла и некоторая стабилизация температуры тела.

3. Повышение эндогенного тепла путем мускульной деятельности. Например, бабочки за счет дрожания крыльев, рыбы – за счет быстрого плавания, змеи – путем спазматических сокращений мускулатуры и т.д. Пчелы используют «общественную» регуляцию температуры в улье за счет дрожания крыльев большого числа особей.

Адаптивное поведение как способ приспособления

к температурным условиям среды

У растений этот способ отсутствует, он характерен только для животных. У простейших адаптивное поведение представляет собой простые акты термотропизма – отрицательный или положительный (движение в сторону более высокой или низкой температуры).

У более высокоорганизованных животных два главных принципа адаптивной поведенческой терморегуляции:

1. Активный выбор мест с наиболее благоприятным микроклиматом. Насекомые, пресмыкающиеся и амфибии активно отыскивают хорошо освещенные солнцем места для обогрева. Получив тепло, они перемещаются в тень. Некоторые животные используют тепло, накопленное песком или скалами. Водные животные перемещаются из глубины в мелководье, где вода прогрета солнцем, и возвращаются обратно. Черви, моллюски, ракообразные делают укрытия или используют естественные укрытия.

2. Смена поз. Животные принимают позы, при которых увеличивается поверхность тела, прогреваемая прямыми лучами солнца. Например, игуаны рано утром принимают «распростертые» позы, прижимаются к земле. Как только они начинают перегреваться, принимают «приподнятую» позу, поднимаясь на конечностях, поднимая голову и верхнюю часть живота. Эффективность адаптивного поведения очень высока: в течение активной части суток животные могут поддерживать почти постоянную температуру тела.

Источник

Адаптация животных к условиям жизни при низких и высоких температурах среды

Термический гомеостаз является важнейшим условием нормального функционирования животного организма.

В первую очередь это относится к теплокровным животным. Ферментные системы организма теплокровных животных сохраняют свою активность в строго определенном диапазоне температур с оптимумом, близким к физиологической температуре тела. Для большинства теплокровных животных зоны умеренного климата температуры тела свыше 40° С губительны. Именно с этого уровня температур начинается процесс денатурации белков, в который раньше других вовлекаются белки со свойствами катализаторов, т. е. ферменты. По отношению к понижению температур эти вещества более терпимы. После охлаждения до 4° С и последующего восстановления температурных условий ферменты восстанавливают свою активность.

Однако отрицательные температуры губительны для теплокровного организма по другой причине. Основной составной частью организма животных (не менее 50% от живой массы) является вода. Так, у рыб содержание воды в теле достигает 75%, у птиц — 70%, быков на откорме — около 60%. Даже тело человека примерно на 63-68% состоит из воды.

Поскольку протоплазма клеток представляет собой водную фазу, то при отрицательных температурах вода из жидкого состояния переходит в твердое. Образование кристаллов воды в составе протоплазмы клеток и в межклеточной жидкости оказывает повреждающее воздействие на клеточные и субклеточные мембраны. Животные тем лучше переносят воздействие отрицательных температур, чем меньше в их теле воды, и прежде всего свободной, не связанной с белками воды.

Другим способом адаптации пойкилотермных к отрицательным температурам является накопление антифризов в биологических жидкостях.

В составе тела арктических рыб обнаружены и выделены специфические гликопротеины со свойствами антифриза. В концентрации 0,6% гликопротеины в 500 раз более эффективно предотвращают образование льда в воде по сравнению с хлористым натрием.

У гомойотермных животных понятие температурного постоянства достаточно условно. Так, колебания температуры тела у млекопитающих представляют существенную величину, превышающую у отдельных представителей 20°С.

Обращает на себя внимание то, что относительно широкий диапазон колебаний температуры тела свойствен по большей части животным, обитающим в теплом климате. У северных животных гомойотермия имеет более жесткий характер.

Популяции животных, принадлежащих к одному виду, но обитающих в разных климатических условиях, имеют ряд отличительных особенностей. Животные из высоких широт имеют большие размеры тела по сравнению с представителями того же вида, но обитающими в районах с жарким климатом. Это общебиологическое правило, и оно хорошо просматривается в пределах многих видов (кабаны, лисы, волки, зайцы, олени, лоси и др.). Географический диморфизм продиктован тем, что увеличение размеров тела приводит к относительному уменьшению поверхности тела и, следовательно, к снижению потерь тепловой энергии. Более мелкие представители того же вида демонстрируют более высокий относительный обмен веществ и энергии, большую относительную площадь тела. Поэтому на единицу массы тела они затрачивают больше энергии и больше энергии теряют через покровы тела. В умеренном и жарком климате мелкие и средние животные имеют преимущества перед своими более крупными собратьями.

Обитатели пустынь, саванн и джунглей экваториальной зоны адаптированы к жизни при чрезвычайно высоких температурах. В пустынях экваториальной зоны песок нагревается до 100°С. Но и в таких экстремальных температурных условиях можно наблюдать активную жизнь животных.

Пауки и скорпионы сохраняют пищевую активность при температуре воздуха до 50°С. Сырная муха Piophila casei выдерживает температуру 52°С. Пустынная саранча выживает и при более высоких температурах — вплоть до 60°С.

В более высоких широтах имеются экологические ниши с температурой среды, существенно превышающей температуру воздуха. В горячих источниках Исландии и Италии при температуре 45-55°С обитают многоклеточные (личинка мухи Scatella sp.), коловратки и амебы. Еще большую устойчивость к высоким температурам демонстрируют яйца артемии (Artemia saliva). Они сохраняют жизнеспособность после 4-часового нагревания до 83°С.

Из представителей класса рыб лишь карпозубик (Cyprinodon nevadensis) проявляет широкие адаптивные способности к экстремальным температурам. Он живет в горячих источниках Долины Смерти (штат Невада), где вода имеет температуру 42°С. В зимнее время он попадается в водоемах, где вода остывает до 3°С.

Приспособленность позвоночных животных к высоким температурам среды не столь высока, как у беспозвоночных. Тем не менее в безводной пустыне обитают представители всех классов этого типа позвоночных, за исключением рыб. У большинства пустынных пресмыкающихся фактически имеет место гомойотермия. Их температура тела в течение суток изменяется в узком диапазоне. Например, у сцинка средняя температура тела равна 33°С (±1°), у воротниковой ящерицы Crataphytus collaris — 38°С, а у игуаны еще выше — 39-40°С.

Летальными температурами тела для этих жителей пустыни являются такие значения: для сцинка — 43°С, для воротниковой ящерицы — 46,5°С, для игуаны — 42°С. Активность дневных и ночных животных приходится на разные температурные диапазоны. Поэтому физиологическая температура тела и летальная температура тела у этологически различающихся групп животных неодинаковы. Для ночных видов критическим уровнем температуры тела является температура в 43-44°С, для дневных — на 5-6°С выше.

Считается, что летальные температуры у рептилий приводят в начале к нарушениям функций нервной системы, а затем к гипоксии вследствие неспособности гемоглобина крови связывать и транспортировать кислород.

У птиц — обитателей пустыни — температура тела при активных действиях на солнце повышается на 2-4°С и доходит до 43-44°С. В состоянии физиологического покоя она составляет 39-40°С. Такая динамика температуры тела выявлена при температуре воздуха 40°С и выше у воробья, кардинала, козодоя, страуса.

Млекопитающие, несмотря на наличие совершенного механизма терморегуляции, также манипулируют температурой собственного тела. Верблюд в состоянии покоя имеет довольно низкую ректальную температуру — около 33°С. Однако в экстремальных условиях (физическая работа на фоне температуры среды свыше 45°С) температура тела животного поднимается до 40°С, т. е. на 7°С, без заметного влияния на его физиологическое состояние и поведение.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Глава 3. Важнейшие абиотические факторы и адаптации к ним организмов

3.1. Температура

3.1.3. Температурные адаптации пойкилотермных организмов

Температура пойкилотермных изменяется вслед за температурой окружающей среды. Они преимущественно эктотермны, выработки и сохранения собственного тепла у них недостаточно для противостояния тепловому режиму местообитаний. В связи с этим реализуется два основных пути адаптации: специализация и толерантность.

Специализированные виды стенотермны, они приспособлены к жизни в таких участках биосферы, где колебания температур происходят лишь в узких пределах. Выход за эти пределы для них губителен. Например, некоторые одноклеточные водоросли, развивающиеся в горных ледниках на поверхности тающего льда, погибают при температурах, превышающих +(3–5) °С. Растения дождевых тропических лесов не способны переносить снижение температуры до +(5–8) °С. Коралловые полипы живут только в диапазоне температур воды от +20,5 до +30 °C, т. е. в тропическом поясе океана. Голотурия Elpidia glacialis обитает при температуре воды от 0 до +1 °C и не выдерживает отклонения от этого режима ни на один градус.

Читайте также:  Амортизаторы сакс для ваз отзывы

Другой путь адаптации пойкилотермных видов – развитие устойчивости клеток и тканей к широкому колебанию температур, характерному для большей части биосферы. Этот путь связан с периодическим торможением обмена веществ и перехода организмов в латентное состояние, когда температура среды сильно отклоняется от оптимума.

Эффективные температуры развития пойкилотермных организмов. Зависимость темпов роста и развития от внешних температур дает возможность рассчитать прохождение жизненного цикла видов в конкретных условиях. После холодового угнетения нормальный обмен веществ восстанавливается для каждого вида при определенной температуре, которая называется температурным порогом развития, или биологическим нулем развития. Чем больше температура среды превышает пороговую, тем интенсивнее протекает развитие и, следовательно, тем скорее завершается прохождение отдельных стадий и всего жизненного цикла организма (рис. 13).

Рис. 13. Состояние развивающихся при разных температурах головастиков через 3 дня после оплодотворения яйца (по С. А. Зернову, 1949)

Для осуществления генетической программы развития пой-килотермным организмам необходимо получить извне определенное количество тепла. Это тепло измеряется суммой эффективных температур. Под эффективной температурой понимают разницу между температурой среды и температурным порогом развития организмов. Для каждого вида она имеет верхние пределы, так как слишком высокие температуры уже не стимулируют, а тормозят развитие.

И порог развития, и сумма эффективных температур для каждого вида свои. Они зависят от исторической приспособленности к условиям жизни. Для семян растений умеренного климата, например гороха, клевера, порог развития низкий: их прорастание начинается при температуре почвы от 0 до +1 °C; более южные культуры – кукуруза и просо – начинают прорастать только при +(8-10) °С, а семенам финиковой пальмы для начала развития нужно прогревание почвы до +30 °C.

Сумму эффективных температур рассчитывают по формуле

где X– сумма эффективных температур; T – температура окружающей среды, С – температура порога развития и t – число часов или дней с температурой, превышающей порог развития.

Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины – до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Петербургом, например, сумма эффективных температур равна 77, кислицы – 453, земляники – 500, а желтой акации – 700 °C.

Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница лесной растительности приблизительно совпадает с июльскими изотермами +(10–12) °С. Севернее тепла для развития деревьев уже не хватает, и зона лесов сменяется безлесными тундрами.

Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.

Температурная компенсация. Ряд пойкилотермных видов, обитающих в условиях переменных температур, развивает возможность поддерживать более или менее постоянный уровень обмена веществ в довольно широких пределах изменения температуры тела. Это явление называется температурной компенсацией и происходит в основном за счет биохимических адаптаций. Например, у моллюсков на побережье Баренцева моря, таких, как брюхоногие литторины (Littorina littorea) и двустворчатые мидии (Mytilus edulis), интенсивность обмена, оцениваемая по потреблению кислорода, почти не зависит от температуры в тех пределах, с которыми моллюски встречаются ежедневно во время приливов и отливов. В весенне-летний период этот диапазон достигает более 20 °C (от +6 до + 30 °C), и в холодной воде их метаболизм столь же интенсивен, как в теплом воздухе. Это обеспечивается действием ферментов, которые при понижении температуры меняют свою конфигурацию таким образом, что возрастает их сродство к субстрату и реакции протекают более активно.

Другие способы температурной компенсации связаны с заменой действующих ферментов сходными по функции, но работающими при иной температуре (изоферментами). Такие адаптации требуют времени, поскольку происходит инактивация одних генов и включение других с последующими процессами сборки белков. Подобная акклимация (сдвиг температурного оптимума) лежит в основе сезонных перестроек, а также обнаруживается у представителей широко распространенных видов в разных по климату частях ареала. Например, у одного из видов бычков из Атлантического океана в низких широтах Q10 имеет невысокое значение, а в холодных северных водах возрастает при низких температурах и снижается при средних. Результатом этих компенсаций является то, что животные могут поддерживать относительное постоянство активности, так как даже незначительное повышение температуры у критических точек усиливает обменные процессы. Температурные компенсации для каждого вида возможны лишь в определенном диапазоне температур, но не выше и не ниже этой области.

Биохимические адаптации при всей их эффективности не представляют главный механизм противостояния неблагоприятным условиям. На самом деле они являются часто «крайним средством» и эволюционно вырабатываются у видов лишь тогда, когда невозможны другие способы, физиологические, морфо-анатомические или поведенческие, избегать экстремальных воздействий без перестройки основного химизма клеток. Ряд пойкилотермных организмов обладает возможностями частичной регуляции теплообмена, т. е. некоторыми способами увеличить поступление тепла в организм или отвести его избыток. В основном эти адаптации возникают у многоклеточных растений или животных и в каждой группе имеют свою специфику.

Элементы регуляции температуры у растений. Растения вырабатывают мало метаболического тепла вследствие эффективного перевода химической энергии из одних форм в другие, поэтому эндотермия не может быть использована ими для терморегуляции. Будучи организмами прикрепленными, они должны существовать при том тепловом режиме, который создается в местах их произрастания. Однако совпадение температур тела растения и среды скорее надо считать исключением, чем правилом, из-за разницы скоростей поступления и отдачи тепла. Высшие растения умеренно холодного и умеренно теплого поясов эвритермны. Тепловой режим растений весьма изменчив. Температура разных органов различна в зависимости от их расположения относительно падающих лучей и разных по степени нагретости слоев воздуха (рис. 14). Тепло поверхности почвы и приземного слоя воздуха особенно важно для тундровых и высокогорных растений. Приземистость, шпалерные и подушковидные формы роста, прижатость листьев розеточных и полурозеточных побегов к субстрату у арктических и высокогорных растений можно рассматривать как адаптацию к лучшему использованию тепла в условиях, где его мало (рис. 15).

Рис. 14. Температура (в °С) разных органов растений (из В. Лархера, 1978).

В рамках дана температура воздуха на высоте растения:

A – растение тундры Novosieversia glacialis,

Б – кактус Ferocactus wislisenii

Рис. 15. Высокогорное растение Копетдага качим подушковидный – Gypsophila aretiodes (по К. П. Попову, Э. М. Сейфулину, 1994)

В дни с переменной облачностью надземные органы растений испытывают резкие перепады температуры. Например, у дубравного эфемероида пролески сибирской, когда облака закрывают солнце, температура листьев может упасть с +(25–27) °С до +(10–15) °С, а затем, когда растения снова освещаются солнцем, поднимается до прежнего уровня. В пасмурную погоду температура листьев и цветков близка к температуре окружающего воздуха, но чаще бывает на несколько градусов ниже из-за транспирации. У многих растений разница температур заметна даже в пределах одного листа. Обычно верхушка и края листьев холоднее, поэтому при ночном охлаждении в этих местах в первую очередь конденсируется роса и образуется иней. При нагревании солнечными лучами температура растения может быть значительно выше температуры окружающего воздуха. Иногда эта разница доходит более чем до 20 °C, как, например, у крупных мясистых стеблей пустынных кактусов или стволов одиночно стоящих деревьев.

Основное средство отведения избытка тепла и предотвращения ожогов – устьичная транспирация. Испарение 1 г воды выводит из тела растения около 583 кал (2438 Дж). Если в жаркую солнечную погоду смазать вазелином ту поверхность листа, на которой расположены устьица, лист очень быстро гибнет от перегрева и ожогов. Усиление транспирации при повышении температуры среды охлаждает растение. Однако этот механизм терморегуляции эффективен лишь в условиях достаточного водообеспечения, что редко бывает в аридных районах.

Растения обладают также рядом морфологических адаптации, направленных на предотвращение перегрева. Этому служат густая опушенность листьев, рассеивающая часть солнечных лучей, глянцевитая поверхность, способствующая их отражению, уменьшение поглощающей лучи поверхности. Многие злаки, как, например, ковыль или овсяница, в жару свертывают листовые пластинки в трубочку, у эвкалиптов листья располагаются ребром к солнечным лучам, у части растений аридных районов листва полностью или частично редуцируется (саксаулы, кактусы, кактусовидные молочаи и др.).

В экстремально холодных условиях средствами получения дополнительного тепла служат также некоторые морфологические особенности растений. Основные из них – особые формы роста. Карликовость и образование стелющихся форм позволяет использовать микроклимат приземного слоя летом и быть защищенными снеговым покровом зимой. Своеобразны растения-подушки. Их полусферическая форма создается за счет густого ветвления и слабого роста побегов. Листья располагаются лишь на периферии, в результате чего экономится общая поверхность растения, через которую происходит рассеивание тепла. Как известно, из всех геометрических фигур у шара наименьшее отношение поверхности к объему, что и реализуется в форме растения. Значительная часть холодостойких растений имеет темную окраску, что помогает лучше поглощать тепловые лучи и нагреваться даже под снегом. В Антарктиде летом температура темно-коричневых лишайников бывает выше 0 °C даже под слоем снега в 30 см.

Читайте также:  Амортизатор в разборе амулет

И транспирация, и морфологические адаптации, направленные на поддержание теплового баланса растений, подчиняются физическим законам природы и относятся к способам физической терморегуляции. У растений физическая терморегуляция хотя и представлена различными элементами, но в целом эффективность ее низка и распространяется лишь на несколько процентов общего теплового потока через организмы. Эти элементы терморегуляции позволяют растениям выживать в условиях, когда температура среды приближается к основным критическим значениям, но не могут стабилизировать их общий тепловой баланс. Более существенное значение для растений имеют физиологические механизмы температурных адаптации, повышающие их толерантность к холоду или перегреву (накопление в клетках антифризов, листопад, отмирание надземных частей, уменьшение в клетках воды и т. п.).

В разные фазы онтогенеза требования к теплу различны. В умеренном поясе прорастание семян происходит обычно при более низких температурах, чем цветение, а для цветения требуется более высокая температура, чем для созревания плодов.

По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы:

1) нехолодостойкие растения– сильно повреждаются или гибнут при температурах, еще не достигающих точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей;

2) неморозостойкие растения– переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитоплазме, что понижает точку замерзания до – (5–7) °С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что, однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические растения – лавры, лимоны и др.;

3) льдоустойчивые, или морозоустойчивые, растения– произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность, так как в клетках кристаллического льда не образуется. Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках сахаров (до 20–30 %), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягивается образующимися во внеклеточных пространствах кристаллами льда.

Оттепели в середине, а особенно в конце зимы вызывают быстрое снижение устойчивости растений к морозам. После окончания зимнего покоя закалка утрачивается. Весенние заморозки, наступившие внезапно, могут повредить тронувшиеся в рост побеги и особенно цветки даже у морозоустойчивых растений.

По степени адаптации к высоким температурам можно выделить следующие группы растений:

1) нежаростойкие растения повреждаются уже при +(30–40) °С (эукариотические водоросли, водные цветковые, наземные мезофиты);

2) жаровыносливые растения переносят получасовое нагревание до +(50–60) °С (растения сухих местообитаний с сильной инсоляцией – степей, пустынь, саванн, сухих субтропиков и т. п.).

Некоторые растения регулярно испытывают влияние пожаров, когда температура кратковременно повышается до сотен градусов. Пожары особенно часты в саваннах, в сухих жестколистных лесах и кустарниковых зарослях типа чапарраля. Там выделяют группу растений-пирофитов, устойчивых к пожарам. У деревьев саванн на стволах толстая корка, пропитанная огнеупорными веществами, надежно защищающими внутренние ткани. Плоды и семена пирофитов имеют толстые, часто одревесневшие покровы, которые растрескиваются, будучи опалены огнем.

Возможности регуляции температуры у пойкилотермных животных. Важнейшая особенность животных – их подвижность, способность перемещаться в пространстве создает принципиально новые адаптивные возможности, в том числе и в терморегуляции. Животные активно выбирают местообитания с более благоприятными условиями.

В отличие от растений, животные, обладающие мускулатурой, производят гораздо больше собственного, внутреннего тепла. При сокращении мышц освобождается значительно больше тепловой энергии, чем при функционировании любых других органов и тканей, так как КПД использования химической энергии для совершения мышечной работы относительно низок. Чем мощнее и активнее мускулатура, тем больше тепла может генерировать животное. По сравнению с растениями животные обладают более разнообразными возможностями регулировать, постоянно или временно, температуру собственного тела.

Пойкилотермные животные остаются, однако, как и растения, эктотермными, поскольку общий уровень их метаболизма не настолько высок, чтобы внутреннего тепла стало достаточно для обогревания тела. Например, при температуре +37 °C пустынная игуана потребляет кислорода в 7 раз меньше, чем грызуны такой же величины. Тем не менее некоторые из пойкилотермных животных в состоянии активности способны поддерживать температуру тела более высокую, чем в окружающей среде. Например, бабочки-бражники, ведущие ночной образ жизни, летают и кормятся на цветках даже при +10 °C. Во время полета температура грудного отдела поддерживается на уровне 40–41 °C. Другие насекомые могут летать в холодном воздухе, предварительно разогревая свои летательные мышцы для взлета, например: саранча, шмели, осы, пчелы, крупные ночные совки и др. Шмели собирают нектар даже при +5 °C, имея температуру тела 36–38 °C. При прекращении активности насекомые быстро остывают. Генерировать тепло для обогревания могут в некоторых случаях и рептилии. Самка питона, обвивающая своим телом кладку, сокращая мускулатуру, способна повышать температуру на 5–6 °C в диапазоне внешних температур от +25 до +33 °C. При этом потребление ею кислорода возрастает почти в 10 раз до предельного для рептилий уровня. В более прохладном воздухе змея становится вялой и неактивной.

Основные способы регуляции температуры тела у пойкилотермных животных – поведенческие: перемена позы, активный поиск благоприятных мест обитания, целый ряд специализированных форм поведения, направленных на создание микроклимата (рытье нор, сооружение гнезд и др.).

Переменой позы животное может усилить или ослабить нагревание за счет солнечной радиации. Например, пустынная саранча в прохладные утренние часы подставляет солнечным лучам широкую боковую поверхность тела, а в полдень – узкую спинную. Ящерицы даже высоко в горах в период нормальной активности могут поддерживать температуру тела, используя нагревание прямыми солнечными лучами и тепло нагретых скал. По исследованиям на Кавказе, на высоте 4100 м температура тела Lacerta agilis временами на 29 °C превышала температуру воздуха, держась на уровне 32–36 °C. В сильную жару животные прячутся в тень, скрываются в норах, щелях и т. п. В пустынях днем, например, некоторые виды ящериц и змей взбираются на кусты или зарываются в менее нагретые слои песка, избегая соприкосновения с раскаленной поверхностью грунта. Ящерицы при необходимости стремительно перебегают горячие поверхности только на задних ногах, уменьшая тем самым контакт с почвой (рис. 16). К зиме многие животные ищут убежища, где ход температур более сглажен по сравнению с открытыми местами обитания. Еще более сложны формы поведения общественных насекомых: пчел, муравьев, термитов, которые строят гнезда с хорошо регулируемой внутри них температурой, почти постоянной в период их активности.

Рис. 16. Поведение ящериц, спасающихся от раскаленной поверхности песка в пустыне

Рис. 17. Испарительная терморегуляция у животных:

1– ящерица – испарение со слизистых при открытом рте;

2– антилоповый суслик – натирание слюной;

3– койот – испарение со слизистых при учащенном дыхании

У ряда пойкилотермных животных эффективно действует и механизм испарительной терморегуляции. Лягушка за час при +20 °C теряет на суше 7770 Дж, что в 300 раз больше ее собственной теплопродукции. Многие рептилии при приближении температуры к верхней критической начинают тяжело дышать или держать рот открытым, усиливая отдачу воды со слизистых оболочек (рис. 17). Пчелы, летающие в жаркую погоду, избегают перегрева, выделяя изо рта каплю жидкости, испарение которой удаляет избыток тепла.

Однако, несмотря на ряд возможностей физической и поведенческой терморегуляции, пойкилотермные животные могут осуществлять ее лишь в узком диапазоне температур. Из-за общего низкого уровня метаболизма они не могут обеспечить постоянство теплового баланса и достаточно активны только вблизи от верхних температурных границ существования. Овладение местообитаниями с постоянно низкими температурами для холоднокровных животных затруднительно. Оно возможно только при развитии специализированной криофилии и в наземных условиях доступно лишь мелким формам, способным использовать малейшие преимущества микроклимата.

Источник

Правильные рекомендации