Что такое полное кислородное расщепление глюкозы

Диабет

Энергетический обмен

Обмен веществ

Энергетический обмен

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Гликолиз и дыхание

В процессе фотосинтеза солнечная энергия запасается в химических связях углеводных молекул, из которых наиболее важную роль играет шестиуглеродный сахар глюкоза. После того как другие живые организмы используют эти молекулы в пищу, запасенная энергия выделяется и используется для метаболизма. Это происходит во время процессов гликолиза и дыхания. Весь химический процесс можно коротко описать так:

глюкоза + кислород → углекислый газ + вода + энергия

Чтобы лучше понять эти процессы, представьте себе, что организм «сжигает» углеводы, чтобы получить энергию.

Термин «гликолиз» образован при соединении слова лизис, означающего «расщепление», со словом глюкоза. Как следует из названия, процесс начинается с химического извлечения энергии посредством расщепления молекулы глюкозы на две части, каждая из которых содержит три атома углерода. В процессе гликолиза из каждой молекулы глюкозы получается две трехуглеродные молекулы пировиноградной кислоты. Кроме того, энергия глюкозы запасается в молекулах (см. Биологические молекулы), которые мы называем «энергетической валютой» клетки, — двух молекулах АТФ и двух молекулах НАДФ. Таким образом, уже на первой стадии гликолиза энергия высвобождается в такой форме, которая может быть использована клетками организма.

Дальнейший ход событий зависит от наличия или отсутствия кислорода в среде. При отсутствии кислорода пировиноградная кислота превращается в другие органические молекулы в ходе так называемых анаэробных процессов. Например, в клетках дрожжей пировиноградная кислота превращается в этанол. У животных, к которым относится и человек, при истощении запасов кислорода в мышцах пировиноградная кислота превращается в молочную кислоту — именно она вызывает так хорошо знакомое всем нам ощущение мышечной скованности после тяжелой физической нагрузки.

При наличии же кислорода энергия выделяется в процессе аэробного дыхания, когда пировиноградная кислота расщепляется на молекулы углекислого газа и воды с одновременным высвобождением оставшейся энергии, запасенной в углеводной молекуле. Дыхание происходит в специализированной клеточной органелле — митохондрии. Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула — ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки — цикл Кребса.

Цикл Кребса (его также называют циклом лимонной кислоты или циклом трикарбоновых кислот) является примером хорошо знакомого в биологии явления — химической реакции, которая начинается, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь. В цикле Кребса роль входящей молекулы играет ацетильная группа, образующаяся при расщеплении пировиноградной кислоты, а роль молекулы-помощника — четырехуглеродная молекула щавелевоуксусной кислоты. Во время первой химической реакции цикла эти две молекулы соединяются с образованием шестиуглеродных молекул лимонной кислоты (этой кислоте цикл обязан одним из своих названий). Далее происходят восемь химических реакций, в которых сначала образуются молекулы-переносчики энергии и углекислый газ, а затем новая молекула щавелевоуксусной кислоты. Для переработки энергии, запасенной в одной молекуле глюкозы, цикл Кребса нужно пройти дважды. Чистая прибыль оказывается равной двум молекулам АТФ, четырем молекулам углекислого газа и десяти другим молекулам-переносчикам энергии (о них немного позже). Углекислый газ, в конечном счете, диффундирует из митохондрии и выделяется при выдохе.

Цикл Кребса принципиально важен для жизни не только потому, что в нем образуется энергия. Помимо глюкозы в него могут вступать многие другие молекулы, также образующие пировиноградную кислоту. Например, когда вы соблюдаете диету, организму не хватает потребляемой вами глюкозы для поддержания метаболизма, поэтому в цикл Кребса, после предварительного расщепления, вступают липиды (жиры). Вот почему вы теряете вес. Кроме того, молекулы могут покидать цикл Кребса, чтобы принять участие в построении новых белков, углеводов и липидов. Таким образом, цикл Кребса может принимать энергию, сохраненную в разной форме во многих молекулах, и создавать на выходе разнообразные молекулы.

Читайте также:  Статьи о препарате по лечению сахарного диабета

С энергетической точки зрения чистый результат цикла Кребса состоит в том, чтобы завершить извлечение энергии, запасенной в химических связях глюкозы, передать небольшую часть этой энергии молекулам АТФ и запасти остальную энергию в других молекулах-переносчиках энергии. (Говоря об энергии химических связей, не надо забывать, что для разделения соединенных атомов необходимо совершить работу.) На заключительном этапе дыхания эта оставшаяся энергия высвобождается из молекул-переносчиков и также запасается в АТФ. Молекулы, запасающие энергию, перемещаются внутри митохондрии, пока не столкнутся со специализированными белками, погруженными во внутренние мембраны митохондрии. Эти белки отнимают электроны у переносчиков энергии и начинают передавать их по цепи молекул — наподобие цепочки людей, передающих ведра с водой на пожаре, — извлекая энергию, запасенную в химических связях. Извлеченная на каждом этапе энергия запасается в форме АТФ. На последнем этапе электроны соединяются с атомами кислорода, которые далее объединяются с ионами водорода (протонами), образуя воду. В цепи переноса электронов образуется не менее 32 молекул АТФ — 90% энергии, хранившейся в исходной молекуле глюкозы.

Превращение энергии в цикле Кребса включает в себя довольно сложный процесс хемиосмотического сопряжения. Этот термин указывает на то, что в высвобождении энергии наряду с химическими реакциями участвует осмос — медленное просачивание растворов через органические перегородки. По сути дела, электроны с переносчиков энергии, являющихся продуктом цикла Кребса, переносятся по транспортной цепочке и поступают на белки, погруженные в мембрану, которая разделяет внутренний и внешний компартменты (отсеки) митохондрии. Энергия электронов используется для перемещения ионов водорода (протонов) во внешний компартмент, служащий «энергохранилищем» — наподобие водохранилища, образовавшегося перед плотиной. При оттоке протонов через мембрану энергия используется для образования АТФ, подобно тому как вода перед плотиной используется для производства электричества при падении на генератор. Наконец, во внутреннем компартменте митохондрии ионы водорода соединяются с молекулами кислорода с образованием воды — одного из конечных продуктов метаболизма.

Этот рассказ о гликолизе и дыхании иллюстрирует, насколько далеко зашли современные представления о живых системах. Простое высказывание о конкретном процессе — например, что для метаболизма необходимо «сжигать» углеводы — влечет за собой невероятно подробное описание сложных процессов, происходящих на молекулярном уровне и с участием огромного количества различных молекул. Осмысление современной молекулярной биологии в чем-то сродни чтению классического русского романа: вам легко понять каждое взаимодействие между персонажами, но, дойдя до страницы 1423, вы вполне можете забыть, кем приходится Петр Петрович Алексею Алексеевичу. Точно так же каждая химическая реакция в только что описанной цепи кажется понятной, но дочитав до конца вы будете поражены непостижимой сложностью процесса. В качестве утешения замечу, что я чувствую себя так же.

Источник

Что такое полное кислородное расщепление глюкозы

Установите соответствие между характеристиками и этапами энергетического обмена: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Соответствие между характеристиками и этапами энергетического обмена:

1) бескислородный: А) Образуется этиловый спирт и углекислый газ; Г) Данный этап свойствен как анаэробным,

так и аэробным организмам;

2) кислородный: Б) Запасается более 30 молекул АТФ при расщеплении одной молекулы глюкозы; В) Пировиноградная кислота распадается на воду и углекислый газ; Д) Процесс протекает в митохондриях.

Второй этап – бескислородный, или неполный, анаэробное дыхание (гликолиз или брожение). Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

Гликолиз – один из центральных путей катаболизма глюкозы, когда расщепление углевода с образованием АТФ происходит в бескислородных условиях. У аэробных организмов (растения, животные) это одна из стадий клеточного дыхания, у микроорганизмов – брожение – основной способ получения энергии. Ферменты гликолиза локализованы в цитоплазмы. Процесс протекает в два этапа при отсутствии кислорода.

В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы ПВК, которые затем восстанавливаются в молочную кислоту с использованием восстановленного НАДН. У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение). У других микроорганизмов расщепление глюкозы – гликолиз может завершаться образованием ацетона, уксусной кислоты и др.

Третий этап – стадия кислородного расщепления, или аэробного дыхания. Аэробное дыхание осуществляется в митохондриях клетки при доступе кислорода. Процесс клеточного дыхания также состоит из 3 этапов. Таким образом, при полном окислении одной молекулы глюкозы до конечных продуктов – углекислого газа и воды при доступе кислорода образуется 38 молекул АТФ.

Источник

Что такое полное кислородное расщепление глюкозы

а) Высвобождение энергии из глюкозы с помощью пентозофосфатного цикла. Большинство мышц организма для получения энергии используют в основном углеводы, для этого они расщепляются посредством гликолиза до пировиноградной кислоты с последующим ее окислением. Однако процесс гликолиза не является единственным способом, с помощью которого глюкоза может расщепляться и использоваться для энергетических целей. Другим важным механизмом расщепления и окисления глюкозы служит пентозофосфатный путь (или фосфоглюконатный путь), который ответствен за 30% распада глюкозы в печени, что превышает ее расщепление в жировых клетках.

Этот путь особенно важен, поскольку обеспечивает клетки энергией независимо от всех ферментов цикла лимонной кислоты, поэтому он является альтернативным путем обмена энергии в случаях нарушений ферментных систем цикла Кребса, что принципиально важно для обеспечения энергией многочисленных процессов синтеза в клетках.

Пентозофосфатный путь метаболизма глюкозы

Видно, что на различных этапах превращения глюкозы могут выделяться 3 молекулы углекислого газа и 4 атома водорода с образованием сахара, содержащего 5 атомов углерода, — D-рибулезы. Это вещество может последовательно превращаться в различные другие пяти-, четырех-, семи- и трехуглеродные сахара. В итоге путем различных комбинаций этих углеводов может ресинтезироваться глюкоза.

При этом ресинтезируются только 5 молекул глюкозы на каждые 6 молекул, исходно вступивших в реакции, поэтому пентозофосфатный путь является циклическим процессом, приводящим к метаболическому распаду одной молекулы глюкозы в каждом завершившемся цикле. При повторении цикла вновь все молекулы глюкозы превращаются в углекислый газ и водород. Затем водород вступает в реакции окислительного фосфорилирования, образуя АТФ, однако чаще он используется для синтеза жиров и других веществ следующим образом.

в) Использование водорода для синтеза жиров. Функции никотинамидадениндинуклеотидфосфата. Водород, выделяющийся во время пентозофосфатного цикла, не объединяется с НАД+, как во время гликолиза, но взаимодействует с НАДФ+, который практически идентичен НАД+, за исключением фосфатного радикала. Эта разница имеет существенное значение, т.к. только при условии связывания с НАДФ+ с образованием НАДФ-Н водород может использоваться для образования жиров из углеводов и синтеза некоторых других веществ.

Когда гликолитический процесс использования глюкозы замедляется в связи с меньшей активностью клеток, пентозофосфатный цикл остается действенным (особенно в печени) и обеспечивает расщепление глюкозы, которая продолжает поступать в клетки. Образующийся при этом в достаточных количествах НАДФ-Н способствует синтезу из ацетил-КоА (производного глюкозы) длинных цепочек жирных кислот. Это еще один путь, который обеспечивает использование энергии, заключенной в молекуле глюкозы, но в этом случае для образования не АТФ, а запасов жира в организме.

в) Превращение глюкозы в гликоген или жиры. Если глюкоза не используется сразу на энергетические нужды, но избыток ее продолжает поступать в клетки, она начинает запасаться в виде гликогена либо жиров. Пока глюкоза хранится преимущественно в виде гликогена, который запасается в максимально возможном количестве, этого количества гликогена хватает для обеспечения энергетических потребностей организма в течение 12-24 ч.

Если гликоген-запасающие клетки (главным образом клетки печени и мышц) приближаются к пределу своих возможностей по запасанию гликогена, продолжающая поступать глюкоза превращается в клетках печени и жировой ткани в жиры, которые направляются на хранение в жировые ткани. Другие пути превращения жиров изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Задачи по цитологии. Энергетический обмен (Катаболизм или диссимиляция)

Задачи по цитологии. Энергетический обмен (Катаболизм или диссимиляция)

Методические рекомендации по подготовке к ЕГЭ

1. В процессе гликолиза образовались 102 молекул пировиноградной кислоты (ПВК). Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении глюкозы в клетках эукариот? Ответ поясните.

2. В процессе гликолиза образовалось 74 молекулы пировиноградной кислоты. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при её полном окислении? Объясните полученные результаты.

3. В процессе кислородного этапа катаболизма образовалось 1116 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

4. В процессе кислородного этапа катаболизма образовалось 1440 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

5. В процессе гликолиза образовались 98 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

6. В процессе гликолиза образовались 56 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

Задачи по цитологии. Энергетический обмен (Катаболизм или диссимиляция)

Методические рекомендации по подготовке к ЕГЭ

1. В процессе гликолиза образовались 102 молекул пировиноградной кислоты (ПВК). Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении глюкозы в клетках эукариот? Ответ поясните.

2. В процессе гликолиза образовалось 74 молекулы пировиноградной кислоты. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при её полном окислении? Объясните полученные результаты.

3. В процессе кислородного этапа катаболизма образовалось 1116 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

4. В процессе кислородного этапа катаболизма образовалось 1440 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

5. В процессе гликолиза образовались 98 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

6. В процессе гликолиза образовались 56 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

Задачи по цитологии. Энергетический обмен (Катаболизм или диссимиляция)

Методические рекомендации по подготовке к ЕГЭ

1. В процессе гликолиза образовались 102 молекул пировиноградной кислоты (ПВК). Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении глюкозы в клетках эукариот? Ответ поясните.

1) В процессе гликолиза при расщеплении 1 молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и выделяется энергия, которой хватает на синтез 2 молекул АТФ.

2) Если образовалось 102 молекулы пировиноградной кислоты, то, следовательно, расщеплению подверглось 102 : 2 = 51 молекул глюкозы.

3) При полном окислении в расчете на одну молекулу глюкозы образуется 38 молекул АТФ.

Следовательно, при полном окислении 51 молекулы глюкозы образуется 38 х 51 = 1938 молекул АТФ

2. В процессе гликолиза образовалось 74 молекулы пировиноградной кислоты. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при её полном окислении? Объясните полученные результаты.

1) В процессе гликолиза при расщеплении 1 молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и выделяется энергия, которой хватает на синтез 2 молекул АТФ.

2) Если образовалось 74 молекулы пировиноградной кислоты, то, следовательно, расщеплению подверглось 74 : 2 = 37 молекул глюкозы.

3) При полном окислении в расчете на одну молекулу глюкозы образуется 38 молекул АТФ.

Следовательно, при полном окислении 37 молекул глюкозы образуется 38 х 37 = 1406 молекул АТФ

3. В процессе кислородного этапа катаболизма образовалось 1116 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

1) В процессе энергетического обмена, в ходе кислородного этапа из одной молекулы глюкозы образуется 36 молекул АТФ, следовательно, гликолизу, а затем полному окислению подверглось 1116 : 36 = 31 молекула глюкозы.

2) При гликолизе одна молекула глюкозы расщепляется до 2-ух молекул ПВК с образованием 2 молекул АТФ. Поэтому количество молекул АТФ, образовавшихся при гликолизе, равно 31 × 2 = 62 АТФ.

3) При полном окислении одной молекулы глюкозы образуется 38 молекул АТФ, следовательно, при полном окислении 31 молекулы глюкозы образуется 38 × 31 = 1178 молекул АТФ.

4. В процессе кислородного этапа катаболизма образовалось 1440 молекулы АТФ. Определите, какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образовалось в результате гликолиза и полного окисления? Ответ поясните.

1) В процессе кислородного этапа энергетического обмена из одной молекулы глюкозы образуется 36 молекул АТФ, следовательно, гликолизу, а затем полному окислению подверглось 1440 : 36 = 40 молекул глюкозы.

2) При гликолизе одна молекула глюкозы расщепляется до 2-ух молекул ПВК с образованием 2 молекул АТФ. Поэтому количество молекул АТФ, образовавшихся при гликолизе, равно 40 × 2 = 80.

3) При полном окислении одной молекулы глюкозы образуется 38 молекул АТФ, следовательно, при полном окислении 40 молекул глюкозы образуется 38 × 40 = 1520 молекул АТФ.

5. В процессе гликолиза образовались 98 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

1) В процессе гликолиза при расщеплении 1 молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и выделяется энергия, которой хватает на синтез 2 молекул АТФ.

2) Если образовалось 98 молекулы АТФ, то, следовательно, расщеплению подверглось 98 : 2 = 49 молекул глюкозы.

3) В процессе энергетического обмена, в ходе кислородного этапа из одной молекулы глюкозы образуется 36 молекул АТФ, следовательно, 36 х 49 = 1764 молекул АТФ

4) При полном окислении в расчете на одну молекулу глюкозы образуется 38 молекул АТФ.

Следовательно, при полном окислении 49 молекулы глюкозы образуется 38 х 49 = 1862 молекулы АТФ.

6. В процессе гликолиза образовались 56 молекул АТФ. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется в ходе кислородного этапа катаболизма и при полном окислении глюкозы в клетках эукариот? Ответ поясните.

1) В процессе гликолиза при расщеплении 1 молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и выделяется энергия, которой хватает на синтез 2 молекул АТФ.

2) Если образовалось 56 молекулы АТФ, то, следовательно, расщеплению подверглось 56 : 2 = 28 молекул глюкозы.

3) В процессе энергетического обмена, в ходе кислородного этапа из одной молекулы глюкозы образуется 36 молекул АТФ, следовательно, 36 х 28 = 1008 молекул АТФ

4) При полном окислении в расчете на одну молекулу глюкозы образуется 38 молекул АТФ.

Следовательно, при полном окислении 28 молекул глюкозы образуется 38 х 28 = 1064 молекулы АТФ.

Источник

Читайте также:  Сахарный диабет центр в нижнем новгороде
Оцените статью
Правильные рекомендации
ХАРАКТЕРИСТИКИ ЭТАПЫ

А) Образуется этиловый спирт и углекислый

Б) Запасается более 30 молекул АТФ при

расщеплении одной молекулы глюкозы.

В) Пировиноградная кислота распадается на

воду и углекислый газ.

Г) Данный этап свойствен как анаэробным,

так и аэробным организмам.

Д) Процесс протекает в митохондриях.