Эталон образуется из глюкозы при

Диабет

Эталон образуется из глюкозы при

а) Кратко о механизме образования АТФ при расщеплении глюкозы. Мы можем определить общее количество молекул АТФ, которое образуется при расщеплении 1 молекулы глюкозы при оптимальных условиях.

1. Во время гликолиза образуются 4 молекулы АТФ: 2 молекулы АТФ расходуются на первом этапе фосфорилирования глюкозы, необходимого для хода процесса гликолиза, чистый выход АТФ при гликолизе равен 2 молекулам АТФ.

2. В итоге цикла лимонной кислоты образуется 1 молекула АТФ. Однако в связи с тем, что 1 молекула глюкозы расщепляется на 2 молекулы пировиноградной кислоты, каждая из которых проходит оборот в цикле Кребса, получается чистый выход АТФ на 1 молекулу глюкозы, равный 2 молекулам АТФ.

3. При полном окислении глюкозы суммарно образуются 24 атома водорода в связи с процессом гликолиза и циклом лимонной кислоты, 20 из них окисляются в соответствии с хемоосмотическим механизмом (для облегчения понимания просим вас изучить рисунок ниже) с выделением 3 молекул АТФ на каждые 2 атома водорода. В итоге получается еще 30 молекул АТФ.

4. Четыре оставшихся атома водорода выделяются под влиянием дегидрогеназ и включаются в цикл хемоосмотического окисления в митохондриях помимо первой стадии, приведенной на рисунке ниже. Окисление 2 атомов водорода сопровождается получением 2 молекул АТФ, в итоге получается еще 4 молекулы АТФ.

Сложив все полученные молекулы, получим 38 молекул АТФ как максимально возможное количество при окислении 1 молекулы глюкозы до углекислого газа и воды. Следовательно, 456000 калорий могут сохраняться в виде АТФ из 686000 калорий, получаемых при полном окислении 1 грамм-молекулы глюкозы. Эффективность преобразования энергии, обеспечиваемая этим механизмом, составляет около 66%. Остальные 34% энергии преобразуются в тепловую и не могут быть использованы клетками для выполнения специфических функций.

Выделение энергии из гликогена

а) Регуляция выделения энергии из запасенного гликогена. Влияние концентрации АТФ и АДФ в клетке на управление скоростью процессов гликолиза. Продолжительное высвобождение энергии из глюкозы, когда клетки не нуждаются в энергии, было бы слишком расточительным процессом. Гликолиз и последующее окисление атомов водорода постоянно контролируются в соответствии с потребностями клеток в АТФ. Этот контроль осуществляется многочисленными вариантами управляющих механизмов обратной связи в ходе химических реакций. К числу наиболее важных влияний такого рода можно отнести концентрацию АДФ и АТФ, контролирующую скорость химических реакций в ходе процессов обмена энергии.

Одним из важных путей, позволяющих АТФ управлять обменом энергии, является ингибирование фермента фосфофруктокиназы. Этот фермент обеспечивает образование фруктозо-1,6-дифосфата — одной из начальных стадий гликолиза, поэтому результирующим влиянием избытка АТФ в клетке будет торможение или даже остановка гликолиза, что, в свою очередь, приведет к торможению обмена углеводов. АДФ (равно как и АМФ) оказывает противоположное влияние на фосфофруктокиназу, существенно повышая ее активность. Когда АТФ используется тканями для энергообеспечения большинства химических реакций в клетках, это уменьшает ингибирование фермента фосфофруктокиназы, более того, его активность повышается параллельно увеличению концентрации АДФ. В результате запускаются процессы гликолиза, приводящие к восстановлению запасов АТФ в клетках.

Другой способ управления опосредован цитратами, образующимися в цикле лимонной кислоты. Избыток этих ионов существенно снижает активность фосфофруктокиназы, что не дает гликолизу опережать скорость использования пировиноградной кислоты, образующейся в результате гликолиза в цикле лимонной кислоты.

Третий способ, с помощью которого система АТФ-АДФ-АМФ может контролировать обмен углеводов и управлять выделением энергии из жиров и белков, заключается в следующем. Возвращаясь к различным химическим реакциям, служащим способом выделения энергии, мы можем заметить, что если весь имеющийся в наличии АМФ уже превращен в АТФ, дальнейшее образование АТФ становится невозможным. В результате прекращаются все процессы использования питательных веществ (глюкозы, белков и жиров) для получения энергии в виде АТФ. Лишь после использования образовавшегося АТФ в качестве источника энергии в клетках для обеспечения разнообразных физиологических функций вновь появляющиеся АДФ и АМФ запустят процессы получения энергии, в ходе которых АДФ и АМФ преобразуются в АТФ. Этот путь автоматически поддерживает сохранение определенных запасов АТФ, кроме случаев экстремальной активности клеток, например при тяжелых физических нагрузках.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Химия. 10 класс

§ 41. Химические свойства глюкозы

Химические свойства глюкозы

В молекуле глюкозы имеются альдегидная и гидроксильные группы, поэтому для неё характерны химические свойства как альдегидов, так и многоатомных спиртов.

Читайте также:  Структурная формула бета глюкоза

Сначала рассмотрим реакции с участием альдегидной группы молекулы глюкозы. Поскольку альдегидная группа имеется только в линейной форме глюкозы, в уравнениях реакции будем записывать формулу глюкозы в линейной форме.

1. Присоединение водорода. Восстановление

Альдегидная группа глюкозы может присоединить молекулу водорода. Эта реакция сопровождается разрывом π-связи между атомами углерода и кислорода альдегидной группы:

Образующийся шестиатомный спирт называется сорбит. Он имеет сладкий вкус и используется в качестве заменителя сахара.

В результате присоединения водорода молекула глюкозы восстанавливается, поэтому реакцию с водородом также называют реакцией восстановления.

2. Окисление аммиачным раствором оксида серебра

Глюкоза даёт качественную реакцию на альдегиды, восстанавливая серебро из аммиачного раствора оксида серебра (реакция «серебряного зеркала»). При этом альдегидная группа молекулы глюкозы окисляется до карбоксильной:

В результате реакции образуется глюконовая кислота.

3. Взаимодействие с гидроксидом меди(II)

Взаимодействие с гидроксидом меди(II) является качественной реакцией как на многоатомные спирты, так и на альдегиды. Глюкоза проявляет свойства как многоатомных спиртов, так и альдегидов. Рассмотрим, что будет наблюдаться при взаимодействии глюкозы с гидроксидом меди(II). Смешаем в пробирке растворы щёлочи и сульфата меди(II). При этом выпадает голубой осадок гидроксида меди(II):

При добавлении в пробирку водного раствора глюкозы происходит растворение гидроксида меди(II) и образуется прозрачный раствор васильково-синего цвета. Такой же эффект наблюдается при действии многоатомных спиртов на свежеосаждённый гидроксид меди(II). Как и в случае многоатомных спиртов, растворение гидроксида меди(II) при взаимодействии с глюкозой происходит вследствие образования растворимого в воде комплексного соединения (§ 25). Эта реакция является качественной реакцией на многоатомные спирты.

В то же время взаимодействие глюкозы с гидроксидом меди(II) имеет интересную особенность, которая позволяет легко отличить глюкозу от многоатомных спиртов. Нагреем содержимое пробирки на пламени спиртовки. В случае многоатомного спирта васильково-синий раствор закипит, но окраска его не изменится. Проба с глюкозой ведёт себя совершенно иначе. При нагревании в пробирке сначала образуется жёлтый осадок, который затем краснеет. Образующаяся смесь напоминает морковный сок. Уравнение протекающей реакции:

Красный осадок представляет собой оксид меди(I) Cu2O. В данной реакции гидроксид меди(II) восстанавливается до оксида меди(I), а глюкоза окисляется до глюконовой кислоты.

В описанном эксперименте глюкоза сначала проявляет свойства многоатомного спирта, растворяя свежеосаждённый гидроксид меди(II). При нагревании смеси происходит реакция уже с альдегидной группой глюкозы — ионы меди(II) окисляют её до карбоксильной группы.

4. Спиртовое брожение

Некоторые микроорганизмы, например дрожжи, обладают способностью преобразовывать глюкозу в этиловый спирт. Этот процесс называется спиртовым брожением глюкозы:

Молочнокислые бактерии обладают способностью преобразовывать глюкозу в молочную кислоту. Этот процесс называется молочнокислым брожением глюкозы:

Молочная кислота является замечательным природным консервантом. Она образуется при скисании молока и содержится в кисломолочных продуктах (простокваша, кефир, творог и др.) которые, в отличие от свежего молока, могут храниться достаточно долго. Наличием молочной кислоты обусловлен кислый вкус этих продуктов. Молочная кислота образуется также в процессах квашения капусты, мочения яблок, силосования зелёных кормов, она препятствует протеканию процессов гниения и позволяет сохранять продукты долгое время.

Глюкоза широко встречается в природе в составе многих овощей и фруктов. Особенно много её в винограде, поэтому глюкозу часто называют виноградным сахаром.

Глюкоза используется в медицине как лекарственный препарат, в частности при ослаблении и интоксикации организма.

В природе глюкоза образуется в зелёных растениях в процессе фотосинтеза:

В промышленности глюкозу получают из целлюлозы и крахмала, подробнее об этом — в следующих параграфах.

В молекуле глюкозы имеются альдегидная и гидроксильные группы, поэтому для неё характерны химические свойства как альдегидов, так и многоатомных спиртов.

Глюкоза даёт качественную реакцию на многоатомные спирты — образование раствора васильково-синего цвета при взаимодействии со свежеосаждённым гидроксидом меди(II).

Глюкоза даёт качественные реакции на альдегидную группу, окисляясь до глюконовой кислоты при нагревании с гидроксидом меди(II) или аммиачным раствором оксида серебра.

Как и альдегиды, глюкоза присоединяет водород. При этом происходит восстановление глюкозы и образуется шестиатомный спирт сорбит.

Под действием бактерий глюкоза подвергается спиртовому брожению с образованием этанола и молочнокислому брожению с образованием молочной кислоты.

Источник

Эталон образуется из глюкозы при

Глюкоза С6Н12O6 представляет собой наиболее распространенный и наиболее важный моносахарид — гексозу. Она является структурной единицей большинства пищевых ди- и полисахаридов.

Биологическая роль глюкозы

Глюкоза образуется в природе в процессе фотосинтеза, протекающего под действием солнечного света в листьях растений:

Читайте также:  Фурункул от сахарного диабета может

Глюкоза – ценное питательное вещество. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. При окислении ее в тканях освобождается энергия, необходимая для нормальной жизнедеятельности организмов:

Глюкоза – необходимый компонент обмена углеводов. Она необходима для образования в печени гликогена (запасной углевод человека и животных).

Уровень содержания глюкозы в крови человека постоянен. Во всем объеме крови взрослого человека содержится 5-6 г глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 минут его жизнедеятельности.

При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при сахарном диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

Строение глюкозы. Изомерия

В молекуле глюкозы присутствуют альдегидная и гидроксильная группы.

Видеоопыт «Распознавание глюкозы с помощью качественных реакций»

Моносахаридам свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксидов. Такая реакция внутри одной молекулы сопровождается ее циклизацией.

Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы. Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме.

В результате взаимодействия карбонильной группы с одной из гидроксильных глюкоза может существовать в двух формах: открытой цепной и циклической.

Образование циклической формы глюкозы при взаимодействии альдегидной группы и спиртового гидроксила при С5 приводит к появлению нового гидроксила у С1 называемого полуацетальным (крайний правый). Он отличается от других большей реакционной способностью, а циклическую форму в этом случае называют также полуацетальной.

В кристаллическом состоянии глюкоза находится в циклической форме, а при растворении частично переходит в открытую и устанавливается состояние подвижного равновесия.

Например, в водном растворе глюкозы существуют следующие структуры:

Подвижное равновесие между взаимопревращающимися структурными изомерами (таутомерами) называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.

Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца.

С учетом пространственного строения шестичленного цикла

формулы этих изомеров имеют вид:

Видеофильм «Глюкоза и ее изомеры»

Аналогичные процессы происходят и в растворе рибозы:

В твердом состоянии глюкоза имеет циклическое строение.

Обычная кристаллическая глюкоза – это α-форма. В растворе более устойчива β-форма (при установившемся равновесии на неё приходится более 60% молекул).

Доля альдегидной формы в равновесии незначительна. Это объясняет отсутствие взаимодействия с фуксинсернистой кислотой (качественная реакция альдегидов).

Явление существования веществ в нескольких взаимопревращающихся изомерных формах было названо А. М. Бутлеровым динамической изомерией. Позднее это явление было названо таутомерией.

Для глюкозы кроме явления таутомерии характерны структурная изомерия с кетонами (глюкоза и фруктоза – структурные межклассовые изомеры) и оптическая изомерия:

Физические свойства глюкозы

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий).

Она содержится в растительных и живых организмах, особенно много ее содержится в виноградном соке (отсюда и название – виноградный сахар), в спелых фруктах и ягодах. Мед в основном состоит из смеси глюкозы с фруктозой.

В крови человека ее содержится примерно 0,1 %

Видеоопыт «Определение глюкозы в виноградном соке»

Получение глюкозы

Основным способом получения моносахаридов, имеющим практическое значения, является гидролиз ди- и полисахароидов.

1. Гидролиз полисахаридов

Глюкозу чаще всего получают гидролизом крахмала (промышленный способ получения):

2. Гидролиз дисахаридов3. Альдольная конденсация формальдегида (реакция А.М. Бутлерова)

Первый синтез углеводов из формальдегида в щелочной среде осуществил А.М. Бутлеров в 1861 году.

4. Фотосинтез

В природе глюкоза образуется в растениях в результате фотосинтеза:

Применение глюкозы

Глюкоза применяется в медицине в качестве укрепляющего лечебного средства при явлениях сердечной слабости, шоке, для приготовления лечебных препаратов, консервирования крови, внутривенного вливания, при самых разнообразных заболеваниях (особенно при истощении организма).

Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников и т. д.)

Глюкоза находит широкое применение в текстильной промышленности при крашении и печатании рисунков.

Глюкоза применяется в качестве исходного продукта при производстве аскорбиновых и глюконовых кислот, для синтеза ряда производных сахаров и т.д.

Она применяется в производстве зеркал и елочных игрушек (серебрение).

В микробиологической промышленности как питательная среда для получения кормовых дрожжей.

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же как и при силосовании кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

Читайте также:  Что можно кушать при сахарном диабете ребенку

На практике используется также спиртовое брожение глюкозы, например при производстве пива.

Фруктоза

Фруктоза (фруктовый сахар) С6Н12О6 – изомер глюкозы. Фруктоза в свободном виде содержится в фруктах, меде. Входит в состав сахарозы и полисахарида инсулина. Она слаще глюкозы и сахарозы. Ценный питательный продукт.

В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом.

Как и глюкоза, она может существовать в линейной и циклических формах. В линейной форме фруктоза представляет собой кетоноспирт с пятью гидроксильными группами.

Строение ее молекулы можно выразить формулой:

Имея гидроксильные группы, фруктоза, как и глюкоза, способна образовывать сахараты и сложные эфиры. Однако вследствие отсутствия альдегидной группы она в меньшей степени подвержена окислению, чем глюкоза. Фруктоза, также как и глюкоза, не подвергается гидролизу.

Фруктоза вступает во все реакции многоатомных спиртов, но, в отличие от глюкозы, не реагирует с аммиачным раствором оксида серебра.

Источник

характеристики и физические свойства глюкозы, молекулы глюкозы

Глюкоза (С6Н12О6) – представляет собой кристаллы белого цвета, сладкие на вкус, вество хорошо растворимые в воде.

Молекулы глюкозы могут существовать в линейной (альдегидоспирт с пятью гидроксильными группами) и циклической форме (α- и β-глюкоза), причем вторая форма получается из первой при взаимодействии гидроксильной группы при 5-м атоме углерода с карбонильной группой (рис. 1).

Формы существования глюкозы:

Рис. 1. Формы существования глюкозы: а) β-глюкоза; б) α-глюкоза; в) линейная форма

Получение глюкозы

В промышленности глюкозу получают гидролизом полисахаридов – крахмала и целлюлозы:

(C6H10O5)x + H2O (H+) → xC6H12O6.

Химические свойства глюкозы

Для глюкозы характерны следующие химические свойства:

1) Реакции, протекающие при участии карбонильной группы:

— глюкоза окисляется аммиачным раствором оксида серебра (1) и гидроксидом меди (II) (2) в глюконовую кислоту при нагревании

CH2OH-(CHOH)4-CH=O + Ag2O → CH2OH-(CHOH)4-COOH + 2Ag↓ (1);

CH2OH-(CHOH)4-CH=O + 2Cu(OH)2 → CH2OH-(CHOH)4-COOH +Cu2O + H2O (2).

— глюкоза способна восстанавливаться в шестиатомный спирт – сорбит

CH2OH-(CHOH)4-CH=O +2[H] → CH2OH-(CHOH)4-CH2OH.

— глюкоза не вступает в некоторые реакции, характерные для альдегидов, например, в реакцию с гидросульфитом натрия.

2) Реакции, протекающие при участии гидроксильных групп:

— глюкоза дает синее окрашивание с гидроксидом меди (II) (качественная реакция на многоатомные спирты);

— образование простых эфиров. При действии метилового спирта на один из атомов водорода замещается на группу СН3. В эту реакцию вступает гликозидный гидроксил, находящийся при первом атоме углерода в циклической форме глюкозы

образование простых эфиров

— образование сложных эфиров. Под действием уксусного ангидрида все пять групп –ОН в молекуле глюкозы замещаются на группу –О-СО-СН3.

C6H12O6 → C3H7COOH + 2H2 + 2CO2↑.

Глюкоза находит широкое применение в текстильной промышленности при крашении и печатании рисунков; изготовлении зеркал и елочных украшений; в пищевой промышленности; в микробиологической промышленности как питательная среда для получения кормовых дрожжей; в медицине при самых разнообразных заболеваниях, особенно при истощении организма.

Примеры решения задач

ПРИМЕР 1

Задание/ Составьте уравнения реакций между глюкозой и следующими веществами: а) водородом (в присутствии катализатора); б) азотной кислотой; в) аммиачным раствором оксида серебра. При каких условиях протекают эти реакции?

Ответ / При взаимодействии глюкозы с водородом в присутствии катализатора (обычно никель) и при нагревании происходит её восстановление. Продуктом этой реакции является шестиатомный спирт – сорбит, который применяется в качестве заменителя сахара:

CH2OH-(CHOH)4-C(O)H + H2→ CH2OH-(CHOH)4-CH2OH.

Качественной реакцией на альдегидную группу является реакция «серебряного зеркала» (глюкоза представляет собой альдегидоспирт) в результате чего выделяется серебро в чистом виде и образуется карбоновая кислота:

CH2OH-(CHOH)4-C(O)H + Ag2O → CH2OH-(CHOH)4-COOH + 2Ag↓.

Окисление глюкозы в жестких условиях, например, концентрированной азотной кислотой, приводит к образованию глюкаровой кислоты:

CH2OH-(CHOH)4-C(O)H +2[O] (HNO3 (conc)) → HOOC-(CHOH)4-COOH + H2O.

ПРИМЕР 2

Задание / Рассчитайте объем оксида углерода (IV), приведенный к нормальным условиям, который выделится при спиртовом брожении 225 г глюкозы.

Решение / Запишем уравнение реакции спиртового брожения глюкозы:

C6H12O6→ 2C2H5OH + 2CO2↑.

Рассчитаем количество вещества глюкозы:

M(C6H12O6) = 2×Ar(C) + 12×Ar(H) + 6×Ar(O) = 2×12 + 12×1 + 6×16 = 180г/моль;

n(C6H12O6) = m(C6H12O6) / M(C6H12O6);

n(C6H12O6) = 225 / 180 = 1,25 моль.

Согласно уравнению реакции n(C6H12O6) : n(CO2) = 1 : 2, значит

n(CO2) = 2×n(C6H12O6) = 2×1,25 = 2,5 моль.

Найдем объем выделившегося углекислого газа:

V(CO2) = 2,5 × 22,4 = 56 л.

Ответ / Объем оксида углерода (IV) равен 56 л.

Источник

Оцените статью
Правильные рекомендации