Этапы аэробного распада глюкозы до углекислого газа и воды

Аэробное окисление глюкозы

В клетках аэробных организмов основным, по крайней мере в отношении общего количества расщепляющейся глюкозы, является ее аэробный распад до углекислого газа и воды.

Сам процесс аэробного окисления глюкозы можно разделить на 3 этапа:

1. Расщепление глюкозы до пирувата.

2. Окислительное декарбоксилирование пирувата до ацетилКоА.

3. Окисление ацетила в цикле Кребса ( ЦТК ), сопряженное с работой цепи дыхательных ферментов.

Общее уравнение аэробного окисления глюкозы:

В аэробных условиях пируват поступает в митозхондрии, где под действием лируватдегидрогиназного комплекса подвергается окислительному декарбоксилированию с образованием ацетил-КоА В состав пируватдегидрогиназного комплекса входит 3 фермента: пируватдекарбоксилаза, дегидролипоатацетилтрансфераза, дегидрогиназа липоевой кислоты. Их количественное соотношение в составе комплекса как правило приближается 30:1:10.

Пируватдекарбоксилаза отщепляет карбоксильную группу в виде СО2 и образует соединенный с ферментом активный ацетоальдегид (гидроксиэтил).

Второй фермент этого комплекса катализирует две реакции:

В качестве простетической группы этот фермент содержит липоевую кислоту В ходе этой реакции происходит перенос остатка эфирного ацетоальдегида на ЛК. Параллельно происходит окисление альдегидной группы до карбоксильной.

В ходе этой реакции происходит перенос ацетильного остатка на входящий в состав

Анаэробный распад глюкозы в клетках (гликолиз), последовательность реакций до образования лактата. Физиологическое значение этих процессов, их регуляция. Роль анаэробного распада глюкозы и гликогена в мышцах. Дальнейшая судьба молочной кислоты.

В анаэробном процессепировиноградная кислота восстанавливается до молочной кислоты (лактата). Лактат является метаболическим тупикоми далее ни во что не превращается, единственная возможность утилизовать лактат – это окислить его обратно в пируват. В микробиологии анаэробный гликолиз называют молочнокислым брожением.

Суммарное уравнение анаэробного гликолиза имеет вид:

Лактат является метаболическим тупикоми далее ни во что не превращается, единственная возможность утилизовать лактат – это окислить его обратно в пируват.

Многие клетки организма способны к анаэробному окислению глюкозы. Для эритроцитовон является единственным источником энергии. Клетки скелетной мускулатуры за счет бескислородного расщепления глюкозы способны выполнять мощную, быструю, интенсивную работу, как, например, бег на короткие дистанции, напряжение в силовых видах спорта. Бескислородное окисление глюкозы усиливается при гипоксииклеток при анемиях, нарушении кровообращения в тканях.

Источник

Этапы аэробного распада глюкозы

Этапы аэробного распада глюкозы Количество использованного АТФ, моль Количество синтезированного АТФ, моль
I. Аэробный гликолиз
Глюкоза → 2 Пируват -2 +10
II. Окислительное декарбоксилирование пирувата
2 (Пируват → Ацетил-КоА) +6
III. Цитратный цикл
2 (Ацетил-КоА → СО2+ Н2О) +24
Суммарный выход АТФ при окислении 1 моль глюкозы +38

Креатин накапливается в мышечных клетках во время физических нагрузок за счет креатинфосфатной реакции.

креатинфосфат + АДФ → креатин + АТФ

Эта реакция обратима. Во время восстановления она протекает в обратном порядке.

креатин + АТФ → креатинфосфат + АДФ

Обязательным условием превращения креатина в креатинфосфат является избыток АТФ, который создается в мышцах после работы, когда уже нет больших энергозатрат на мышечную деятельность. Источником АТФ при восстановлении является тканевое дыхание, протекающее с достаточно высокой скоростью и потребляющее значительное количество кислорода. В качестве окисляемых субстратов при этом чаще всего используются жирные кислоты.

На устранение креатина требуется не более 5 минут. (Это максимально!) В течение этого времени наблюдается повышенное потребление кислорода, называемое алактатный кислородный долг.

Алактатный кислородный долг характеризует вклад креатинфосфатного пути ресинтеза АТФ в энергообеспечение выполняемой физической нагрузки. Наибольших значений алактатный долг достигает в зоне выполнения физических нагрузок максимальной мощности и достигает величины 8-10 л.

Другой продукт анаэробного обмена – молочная кислота –образуется и накапливается в результате функционирования гликолиза. Устранение лактата происходит преимущественно во внутренних органах, так как она легко выходит из клеток в кровяное русло.

Читайте также:  Психологические факторы заболевания при сахарном диабете

Лактат, поступающий из крови в миокард, подвергается аэробному окислению и превращается в конечные продукты – углекислый газ и воду. Такое окисление требует кислорода и сопровождается выделением энергии, которая используется для обеспечения работы сердечной мышцы.

Значительная часть лактата из крови попадает в печень и превращается в глюкозу. Этот процесс называется глюконеогенезом.Процесс этот идет с затратами энергии молекул АТФ, источниками которых являются процессы тканевого дыхания, протекающие с повышенной скоростью и потреблением избыточного количества кислорода по сравнению с покоем.

Повышенное потребление кислорода в ближайшие 1,5-2 часа после завершения мышечной работы, необходимое для устранения лактата называется лактатным кислородным долгом.

Лактатный кислородный долг характеризует вклад гликолиза в энергообеспечение мышечной работы и достигает большой величины 20-22 л.

Частично алактатный и лактатный дог может устраняться во время тренировки, при снижении тренировочных нагрузок, а также в промежутках отдыха. Такое восстановление называется текущим.

Источник

Аэробный распад глюкозы.

Первый этап ГДФ-пути происходит в цитоплазме клеток. На этом этапе глюкоза превращаются в пировиноградную кислоту (пируват). Этот этап часто называют гликолизом.

На первой стадии глюкоза путем взаимодействия с АТФ переходит в активную форму – глюкозо-6-фосфат:

Это единственная реакция, которой подвергается в организме глюкоза. Поэтому все превращения глюкозы в организме начинаются с образования глюкозо-6-фосфата. Далее, глюкозо-6-фосфат вступает в различные пути метаболизма глюкозы (например, рассмотренный выше синтез гликогена).

На следующих стадиях глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, который, взаимодействуя с АТФ, далее превращается во фруктозо-1,6-дифосфат. (Этим объясняется название данного пути распада углеводов – гексозодифосфатный путь, поскольку фруктоза содержит шесть атомов углерода и относится к гексозам).

Перечисленные реакции можно описать следующими уравнениями:

Глюкозо-6-фосфат Фруктозо-6-фосфат Фруктозо-1,6-дифосфат

В последующих реакциях данного этапа участвует только фосфоглицериновый альдегид, и по мере его использования в него превращается фосфодиокси­ацетон:

Фосфодиоксиацетон Фосфоглицериновый альдегид

Поэтому можно считать, что из глюкозы образуется две молекулы фосфоглицеринового альдегида.

Следующая стадия – окисление фосфоглицеринового альдегида, протекающее непосредственно в цитоплазме. В ходе этой реакции от окисляемого вещества отнимаются два атом водорода и временно присоединяются к коферменту НАД. За счет выделяющейся при окислении энергии в продукт реакции включается еще один фосфатный остаток, который присоединяется макроэргической связью:

При невысокой скорости распада углеводов (в покое или при работе умеренной мощности) весь образовавшийся НАД·Н2 передает атомы водорода в дыхательную цепь митохондрий, где эти атомы связываются с молекулярным кислородом и превращаются в воду. За счет выделяющейся при этом энергии осуществляется синтез АТФ. Как уже отмечалось (см. главу «4. Биологическое окисление»), перенос двух атомов водорода на кислород сопровождается синтезом трех молекул АТФ.

Таким образом, в данных условиях первый этап ГДФ – пути протекает аэробно. Поскольку из глюкозы образуется две молекулы фосфоглицеринового альдегида и, соответственно, две молекулы восстановленного НАД, то в расчете на одну молекулу глюкозы в процессе тканевого дыхания осуществляется синтез 6 молекул АТФ.

На следующей стадии фосфатный остаток, благодаря наличию макроэргической связи, легко передается на молекулу АДФ с образованием АТФ:

1,3 –дифосфоглицерат 3-фосфоглицерат

Такой способ синтеза АТФ, осуществляющийся без участия тканевого дыхания и, следовательно, без потребления кислорода, обеспеченный запасом энергии субстрата, называется анаэробным или субстратным фосфорилированием. Это самый быстрый путь получения АТФ.

На последующих стадиях образовавшийся 3-фосфоглицерат изомеризуется в 2-фосфоглицерат, от которого затем отщепляется молекула воды, что приводит к перераспределению энергии в молекуле и возникновению макроэргической связи:

3–фосфоглицерат 2-фосфоглицерат Фосфоенолпируват

Завершается первый этап ГДФ пути реакцией анаэробного фосфорилирования, в ходе которой синтезируется еще одна молекула АТФ:

Фосфоенолпируват Пируват

Учитывая, что из одной молекулы глюкозы образуется 2 молекулы фосфоглицеринового альдегида, всего синтезируется 10 молекулы АТФ (6 – аэробно и 4 – анаэробно). При этом следует учесть, что на первых стадиях расходуется 2 молекулы АТФ на активацию глюкозы и фруктозо-6-фосфата. В итоге превращение глюкозы в пируват сопровождается синтезом 8 молекул АТФ.

Читайте также:  Сахарный завод села успенского

Суммируя уравнения всех стадий, можно получить итоговое уравнение первого этапа:

С6Н12О6 + О2 + 8 АДФ + 8 Н3РО4 2 С3Н4О3 + 2Н2О + 8АТФ

Первый этап распада углеводов практически обратим. Из пирувата, а также из лактата (см. ниже) может синтезироваться глюкоза, а из неё затем гликоген.

Второй и третий этапы ГДФ-пути протекают в митохондриях с участием дыхательной цепи и поэтому обязательно требуют О2. Эти этапы, в отличие от первого, необратимы.

Образовавшийся комплекс уксусной кислоты и кофермента А называется ацетил-кофермент А. Уксусная кислота, связанная с коферментом А, обладает высокой химической активностью, и поэтому ацетил-кофермент А часто называют активной уксусной кислотой.

Итоговое уравнение II этапа ГДФ-пути :

Пируват Кофермент А

O

На третьем этапе остаток уксусной кислоты, входящий в состав ацетил-кофермента А, подвергается дальнейшему окислению и превращается в СО2 и Н2О. Этот этап носит циклический характер и называется циклом трикарбоновых кислот (ЦТК) или циклом Кребса. За счет выделяющейся энергии на этом этапе также осуществляется синтез АТФ.

Вышесказанное можно иллюстрировать следующей схемой:

Белки Углеводы Жиры

(аминокислоты)

ЦТК

Цикл Кребса протекает в митохондриях с обязательным и потреблением кислорода и требует функционирования тканевого дыхания.

На первой стадии цикла остаток уксусной кислоты переносится с молекулы ацетил-кофермента А на молекулу щавелево-уксусной кислоты (ЩУК) с образованием лимонной кислоты:

СООН

СООН СН2

СН3 + СН2 + Н2О НО-С-СООН + KoA

С=О С=О СН2 Кофермент А

SKoA СООН СООН

Ацетил-КоА ЩУК Лимонная кислота

Лимонная кислота содержит три карбоксильные группы, т.е. является трикарбоновой кислотой, что обусловило название этого цикла.

Далее, от лимонной кислоты поочередно отщепляются две молекулы СО2 и четыре пары атомов водорода и вновь образуется ЩУК (в связи с этим рассматриваемый процесс называется циклом). Отщепленный водород по дыхательной цепи передается на молекулярный кислород с образованием воды. Перенос каждой пары атомов водорода на кислород сопровождается синтезом трех молекул АТФ. Всего при окислении одной молекулы ацетил-кофермента А синтезируется 12 молекул АТФ.

Итоговое уравнение цикла Кребса

CH3-C

KoA-SH + 2 CO2 + H2O + 12 АТФ

Схематично цикл Кребса можно представить следующим образом:

Ацетил-КоА СО2

Щавелево-уксусная a- Кетоглутаровая

2H СО2

Источник

Аэробный распад глюкозы. Последовательность реакций

Аэробное окисление глюкозы включает реакции гликолиза и последующее окисление пирувата в цикле Кребса и дыхательной цепи до СО2 и Н2О.

При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислороданедостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат.

В процессе гликолиза образуется АТФ. Суммарное уравнение гликолиза можно представить следующим образом:

Анаэробный распад включает те же реакции специфического пути распада глюкозы до пирувата, но с последующим превращением пирувата в лактат.

В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О.

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

Лактат не является конечным продуктом метаболизма, удаляемым из организма. Из анаэробной ткани лактат переноситься кровью в печень, где превращаясь в глюкозу (Цикл Кори), или в аэробные ткани (миокард), где превращается в ПВК и окисляется до СО2 и Н2О.

Аэробное окисление глюкозы включает реакции гликолиза и последующее окисление пирувата в цикле Кребса и дыхательной цепи до СО2 и Н2О.

При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат.

Читайте также:  Список льгот при диабете

Первой ферментативной реакцией гликолиза (Аэробное окисление глюкозы) является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Второй реакцией гликолиза (Аэробное окисление глюкозы) является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат: Эта реакция протекает легко в обоих направлениях, и для нее не требуется каких-либо кофакторов.

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия – наиболее сложная и важная. Она включает окислительно-восстановительную реакцию (реакция гликолитической оксидоредукции), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ.

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или бромацетатом, протекает в несколько этапов:

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком «тильда»

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3фосфогли-цериновой кислоты (3-фосфоглицерат):

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицериновая кислотапревращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат).

Девятая реакция катализируется ферментом енолазой, при этом 2-фосфоглицериновая кислота в результате отщепления молекулыводы переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ(субстратное фосфорилирование). Катализируется ферментом пируваткиназой:

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакцияпротекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Источник

32. Аэробный распад — основной путь катаболизма глюкозы у человека и других аэробных организмов. Последовательность реакций до образо­вания пирувата (аэробный гликолиз).

Аэробный распад глюкозы можно выразить суммарным уравнением:

Этот процесс включает несколько стадий:

Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;

ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.

Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.

В аэробном гликолизе можно выделить 2 этапа.

Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ.

Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ.

Реакции аэробного гликолиза

Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.

Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.

29.30.Анаэробный распад глюкозы (анаэробный гликолиз). Гликолитическая оксиредукция, пируват как акцептор водорода. Субстратное фосфорилирование. Распространение и физиологическое значение этого пути распада глюкозы.

Анаэробным гликолизом называют процесс расщепления глюкозы с образованием в качестве конечного продукта лактата. Этот процесс протекает без использования кислорода и поэтому не зависит от работы митохондриальной дыхательной цепи. АТФ образуется за счёт реакций субстратного фосфорилирования. Суммарное уравнение процесса:

Источник

Правильные рекомендации
Adblock
detector