Этапы дихотомического распада глюкозы

Диабет

34. Аэробный дихотомический распад глюкозы в тканях, его основные этапы. Биологическое значение. Пентозофосфатный путь распада глюкозы, его биологическая роль.

ПРОЦЕСС АЭРОБНОГО ОКИСЛЕНИЯ ГЛЮКОЗЫ разделяют на 3 этапа:

1. Расщепление глюкозы до пирувата.

2. Окислительное декарбоксилирование пирувата до ацетил-КоА.

3. Окисление ацетила в цикле Кребса (ЦТК).

Эти этапы можно представить в виде общей схемы:

1 Этап. Расщепление глюкозы до пирувата.

По современным представлениям первый этап окисления глюкозы протекает в цитозоле и катализируется надмолекулярным белковым комплексом — гликолитическим метаболоном, включающим в себя до десятка отдельных ферментов.Контроль направления потока метаболитов по данному метаболическому пути осуществляется с помощью термодинамических механизмов. Имеется три реакции, в ходе которых теряется большое количество энергии: гексокиназная, фосфофруктокиназная и пируваткиназная, эти реакции в клетке практически необратимы, и за счет их необратимости процесс становится необратимым.

2 этап. Окислительное декарбоксилирование пирувата с образованием ацетил-КоА. Это превращение катализируется надмолекулярным пируватдегидрогеназным комплексом, локализованным в матриксе митохондрий. Суммарное уравнение процесса:

2Пируват +2НАД + +2HS-КоА –– 2Ацетил-КоА +2НАДН+Н + +2СО2

В ходе окисления 2 моль пирувата высвобождается около 500 кДж энергии, из них около 420 кДж накапливается в виде энергии восстановленного НАД. Остальная энергия рассеивается в виде теплоты.

активность комплекса снижается, если клетка хорошо обеспечена энергией (много АТФ и НАДН+Н + ) или же цикл Кребса не справляется с окислением имеющегося ацетил-КоА.

Образовавшийся ацетил-КоА, как уже неоднократно упоминалось, поступает в цикл трикарбоных кислот, работа которого сопряжена с функционированием цепи дыхательных ферментов. При функционировании этих двух метаболических путей остаток ацетила окисляется до углекислого газа и воды.

Суммарное уравнение для всех трех этапов окисления молекулы глюкозы выглядит следующим образом:Глюкоза + 2 АДФ + 2 ГДФ + 4Ф + 10 НАД + + 2 ФАД +2Н2О –– 6 СО2 + 2 АТФ + 2 ГТФ + 10 НАДН+Н + + 2 ФАДН2; при окислении 1 молекулы глюкозы до углекислого газа и воды клетка получит 38 молекул АТФ (40 синтезируется и 2 расходуется).Второй важной функцией аэробного окисления глюкозы является пластическая функция. Из промежуточных продуктов ее окисления синтезируется много различных соединений, необходимых клетке: Гл-6-ф используется в клетке для синтеза пентоз и глюкуроновой кислоты;Фр-6-ф — для синтеза аминосахаров; ФГА и ФДА — для образования 3-фосфоглицерола, необходимого для синтеза глицеролсодержащих липидов; 3-фосфоглицериновая кислота — для синтеза заменимых аминокислот: серина, глицина и цистеина; ФЭП — для синтеза сиаловых кислот, используемых при синтезе гетероолигосахаридов; пируват — для синтеза аланина; ацетил-КоА — для синтеза жирных кислот и стероидов.

Читайте также:  Сахар диабет и крахмала

Восстановительные эквиваленты и пентозы необходимы для биосинтетических процессов, протекающих в клетках.

Пентозный путь окисления углеводов может быть разделен на два этапа включает в себя достаточно много отдельных парциальных реакций:

Суммарное уравнение окислительного этапа пентозного цикла окисления :

В ходе неокислительного этапа цикла в результате изомеризации образуются необходимые для клетки фосфорилированные пентозы: рибозо-5-фосфат и ксилулозо-5-фосфат.Кроме того, важно отметить, что на этом этапе образуются промежуточные продукты, идентичные с промежуточными продуктами первого этапа аэробного окисления глюкозы: 3-фосфоглицериновый альдедид и Фруктозо-6-фосфат. За счет этих общих промежуточных соединений создается возможность переключения потока метаболитов с пентозного цикла окисления на путь аэробного (или анаэробного) окисления глюкозы и наоборот.

За шесть оборотов пентозного цикла окисления полностью сгорает один остаток глюкозы, так что суммарное уравнение окисления глюкозы в цикле, начиная с Гл-6-ф, можно представить в следующем виде: Гл-6-ф + 7 Н2О + 12 НАДФ + –– 6 СО2 + Ф + 12 НАДФН+Н +

Источник

Функции углеводов

Суточная норма углеводов в пище составляет 400-500 г. Основными углеводами пищи являются:

Всасывание моносахаридов из кишечника в кровь осуществляется путем облегченной диффузии. Если концентрация глюкозы в кишечнике невелика, то ее транспорт может происходить за счет градиента концентрации ионов натрия, создаваемого Na+, K+-AТФ-азой.

Глюкоза играет главную роль в метаболизме, так как именно она является основным источником энергии. Глюкоза может превращаться практически во все моносахариды, в то же время возможно и обратное превращение. Полное рассмотрение метаболизма глюкозы не входит в нашу задачу, поэтому сосредоточимся на основных путях:

Транспорт глюкозы в клетки

Затем с помощью этих белков глюкоза транспортируется в клетку по градиенту концентрации. Скорость поступления глюкозы в мозг и печень не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми.

Катаболизм глюкозы

Характеристика гликолиза:

Аэробный распад глюкозы

Энергетическое значение аэробного распада глюкозы. В аэробном гликолизе образуется 10 моль АТФР на 1 моль глюкозы. Так, в реакциях 7, 10 образуется 4 моль АТФ путем субстратного фосфорилирования, а в реакции 6 синтезируется 6 моль АТФ (на 2 моль глицероальдегидфосфата) путем окислительного фосфорилирования. Баланс аэробного гликолиза. Суммарный эффект аэробного гликолиза составляет 8 моль АТФ, так как в реакциях 1 и 3 используется 2 моль АТФ. Дальнейшее окисление двух моль пируват в общих путях катаболизма сопровождается синтезом 30 моль АТФ (по 15 моль на каждую молекулу пирувата. Следовательно, суммарный энергетический эффект аэробного распада глюкозы до конечных продуктов составляет 38 моль АТФ.

Читайте также:  При сахарном диабете сколько можно есть фиников в день

Значение анаэробного гликолиза

Анаэробный и аэробный гликолиз энергетически неравноценны. Образование двух моль лактата из глюкозы сопровождается синтезом всего двух моль АТФ, потому что NADH, полученный при окислении глицероальдегидфосфата, не используется дыхательной цепью, а акцептируется пируватом.

Анаэробный распад глюкозы. Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т. е. в условиях, когда снабжение кислородом ограничено. Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.

Депонирование и распад гликогена

Однако гликоген более разветвлен и компактен. Ветвление обеспечивает быстрое освобождение при распаде гликогена большого количества концевых мономеров. Синтез и распад гликогена не являются обращением друг в друга, эти процессы происходят разными путями.

Особенности метаболизма гликогена в печени и мышцах

Обмен гликогена в печени и мышцах. Физиологическое значение гликогенолиза в печени и в мышцах различно. Мышечный гликоген является источником глюкозы для самой клетки. Гликоген печени используется главным образом для поддержания физиологической концентрации глюкозы в крови. Различия обусловлены тем, что в клетке печени присутствует фермент глюкозо-6-фосфатаза, катализирующая отщепление фосфатной группы и образование свободной глюкозы, после чего глюкоза поступает в кровоток. В клетках мышц нет этого фермента, и распад гликогена идет только до образования глюкозо-6-фосфата, который затем используется в клетке.

Причем, использование первичных субстратов в глюконеогенезе происходит в различных физиологических состояниях. Так, в условиях голодания часть тканевых белков распадается до аминокислот, которые затем используются в глюконеогенезе. При распаде жиров образуется глицерин, который через диоксиацетонфосфат включается в глюконеогенез. Лактат, образующийся при интенсивной физической работе в мышцах, затем в печени превращается в глюкозу. Следовательно, физиологическая роль глюконеогенеза из лактата и из аминокислот и глицерина различна. Синтез глюкозы из пирувата протекает, как и при гликолизе, но в обратном направлении.

Глюконеогенез. Ферменты: 1-пируваткарбоксилаза, 2-фосфоенолпируваткарбоксикиназа, 3-фосфатаза фру-1,6-дифосфата, 4-глюкозо-6-фосфатаза.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться. Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным.

Читайте также:  Сахарный диабет 2 типа зубные импланты

2 пируват + 4 ATФ + 2 GTP + 2(NADH) + 4 Н2О Глюкоза + 4 ADP + 2 GDP + 2 NAD+ + 6 Н3РО4.

За сутки в организме человека может синтезироваться до 80 г глюкозы. На синтез 1 моль глюкозы из пирувата расходуется 6 макроэргических связей (4 ATФ и 2 GTP).

Глюкозо-лактатный цикл (цикл Кори)

Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу.

Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

Пентозофосфатный путь в метаболизме глюкозы

Пентозофосфатный путь превращения глюкозы. Все реакции пентозофосфатного пути проходят в цитозоле клетки. Реакции неокислительного этапа пентозофосфатного пути являются обратимыми, поэтому становится возможным синтез гексоз из пентоз. Некоторые метаболиты неокислительного пути являются также и метаболитами гликолиза. Из этого следует, что оба процесса тесно связаны и в зависимости от потребностей клетки возможны переключения с одного пути на другой. При сбалансированной потребности в NADPH и пентозах в клетке происходит окислительный путь синтеза пентоз. Если потребности в пентозах превышают потребности в NADPH, то окислительный путь шунтируется за счет использования метаболитов гликолиза: фруктозо-6-фосфат и глицероальдегидфосфат в реакциях неокислительного пути превращаются в пентозы.

Если же NADPH необходим в большей степени, чем пентозы, то возможны два варианта:

Связь пентозофосфатного пути превращения глюкозы с гликолизом и глюконеогенезом

Регуляция метаболизма углеводов (некоторые аспекты). Регуляция метаболизма глюкозы в печени, связанная с ритмом питания.

Регуляция пируватдегидрогеназного комплекса. Переход ферментов из дефосфорилированного состояния в фосфорилированное находится под контролем гормонов, в случае регуляции метаболизма глюкозы в печени основными являются глюкагон и инсулин.

Регуляция синтеза и распада гликогена. Соотношение процессов синтеза гликогена, распада гликогена и гликолиза в мышцах контролируют инсулин и адреналин.

Источник

Оцените статью
Правильные рекомендации