Этапы окисления глюкозы при клеточном дыхании

Лекция № 11. Энергетический обмен

Энергетический обмен

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз.

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО2; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

Читайте также:  Список ягод которые можно есть при диабете

Купить проверочные работы
и тесты по биологии

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О2 — ), с другой — положительно (за счет Н + ). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

1 — наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.

При перфорации внутренних митохондриальных мембран окисление НАД·Н2 продолжается, но АТФ-синтетаза не работает и образования АТФ в дыхательной цепи не происходит, энергия рассеивается в форме тепла (клетки «бурого жира» млекопитающих).

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

где Qт — тепловая энергия.

Перейти к лекции №10 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №12 «Фотосинтез. Хемосинтез»

Смотреть оглавление (лекции №1-25)

Источник

Страшней клешней на свете нет.

Страшней клешней на свете нет.

Karkinos (или Carcinus) — гигантский краб, древнегреческое мифологическое существо, бывшее помощником Гидры в борьбе с Гераклом. Герой раздавил его, но в награду за свою службу Karkinos был помещен среди звезд в виде созвездия Рака. Гиппократ (460–370до н.э.) ввел термин «карцинома», обозначавший злокачественную опухоль с перифокальным воспалением. Кровеносные сосуды вокруг злокачественных опухолей казались ему когтями ракообразного. В I в. до н.э. римский врач Авл Корнелий Цельс (Aulus Cornelius Celsius) перевёл греческое слово carcinus на латынь (cancer — краб).

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Каждое заболевание, будь то бубонная чума или обычная бородавка, имеет первичные и вторичные причины. Например, первичной причиной чумы является ее возбудитель — чумная палочка, — а вторичная причина — крысы, грязь и блохи, которые переносят эту палочку от крысы к человеку. Первопричина любой болезни — это то, что мы можем наблюдать и идентифицировать в каждом случае заболевания. Рак, в отличие от других заболеваний, имеет множество вторичных причин. Общее свойство у всех раковых клеток, похоже, только одно — замена трёхэтапного процесса клеточного дыхания на более древний и примитивный гликолиз.

Конкурс «био/мол/текст»-2013

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Лучший обзор».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Рак — это злокачественная опухоль, которая дает выросты в окружающие ее ткани, похожие на конечности ракообразного (отсюда и название). Ежегодно это заболевание уносит более 300 тысяч жизней. Основными причинами рака являются три группы факторов: физические (ионизирующее излучение, в т.ч. ультрафиолет), химические (канцерогенные вещества) и биологические (некоторые вирусы и бактерии). Под влиянием этих факторов клетки могут стать атипичными, поменять облик и свойства, что отражается во множестве молекулярно-генетических признаков, отличающих их от здоровых клеток:

Рисунок 1. Здоровая (а) и раковая (б) клетки печени. Митохондрии помечены флуоресцентным красным красителем. У здоровой клетки митохондрии расположены кластерами вокруг ядра и отсутствуют вблизи внешней биомембраны. В раковой клетке митохондрии располагаются повсеместно и кластеров не образуют, поэтому интенсивность свечения снижается.

Особенности энергетического обмена

Живой организм — это открытая система, характеризующаяся постоянным обменом веществом и энергией с окружающей средой. На клеточном уровне существуют пластический (анаболизм) и энергетический (катаболизм) виды обмена. В ходе пластического обмена из простых веществ синтезируются более сложные (с затратой энергии). Энергетический обмен обеспечивает клетку энергией в виде АТФ. Все вещества в ходе энергетического обмена распадаются, а АТФ синтезируется. У животных энергетический обмен протекает в 3 этапа:

Читайте также:  Целлобиоза расщепляется с образованием 2 молекул глюкозы

Суммарно в ходе трёхэтапного цикла энергетического обмена из одной молекулы глюкозы образуется 38 молекул АТФ.

И голодно, и холодно, или раковый обмен

В 1926 г. Отто Варбург, исследуя образование молочной кислоты в здоровых и злокачественных (опухолевых) клетках обнаружил, что раковые клетки расщепляют глюкозу до молочной кислоты легче и быстрее, чем это делают нормальные клетки. По данным Варбурга, опухолевая ткань продуцирует молочную кислоту со скоростью в восемь (!) раз больше, чем работающая мышца. Производство лактата с такой скоростью полностью обеспечивает опухолевую ткань энергией (хотя на две молекулы лактата приходится всего две молекулы АТФ). На основе этих данных Варбург предположил существование так называемого «ракового обмена» [6]. Он считал, что в раковых клетках образуется дефект в митохондриях, что и приводит к необратимым нарушениям аэробной стадии энергетического обмена и последующей зависимости от гликолитического метаболизма. В этом случае гликолиз компенсирует энергетическую неполноценность поврежденного дыхания [7]. Он показал, что раковые клетки продолжают использовать гликолиз для получения энергии даже тогда, когда кислород присутствует в тканях в достаточном количестве. Это явление получило название эффекта Варбурга (рис. 2).

Рисунок 2. Различия между реакциями окислительного фосфорилирования, анаэробного гликолиза и аэробного гликолиза (эффект Варбурга). В присутствии кислорода в нормальных дифференцированных тканях в процессе гликолиза происходит расщепление глюкозы до пирувата, который затем в митохондриях в процессе окислительного фосфорилирования полностью окисляется до СО2. Кислород является необходимым компонентом полного окисления глюкозы; когда кислорода оказывается недостаточно, в клетках в процессе гликолиза синтезируется лактат. Лактат не является субстратом для реакции окислительного фосфорилирования, и полного окисления глюкозы в этом случае не происходит. Такой путь расщепления глюкозы до лактата способен поддерживать стабильный синтез минимального количества АТФ. Варбургом было отмечено, что раковые клетки имеют тенденцию к производству лактата, а не пирувата, независимо от присутствия кислорода в клетках. Это свойство также характерно и для нормальных пролиферирующих клеток. Часть митохондрий в раковых клетках остаются функционально активными, и как в раковых, так и в нормальных пролиферирующих клетках доля окислительного фосфорилирования может составлять примерно 10%.

За последние 80 лет тема «ракового обмена» получила широкое распространение среди онкологов и клеточных и молекулярных биологов. Первые работы в этом направлении действительно свидетельствуют о пониженном содержании ключевых компонентов дыхательной цепи митохондрий — цитохрома c, сукцинатдегидрогеназы и цитохромоксидазы [8–10] — и увеличении интенсивности аэробного гликолиза в раковых клетках. Однако ряд последующих работ показал, что в большинстве опухолевых клеток нарушения функции митохондрий не происходит [11], [12], и предлагает объяснение «ракового обмена» на основе детального изучения обмена пролиферирующих клеток.

Общебиологические законы ракового обмена

Одноклеточные организмы состоят всего из одной клетки, но эта клетка — целостный организм, ведущий самостоятельное существование. Одноклеточные организмы хорошо приспособлены к окружающей среде, в которой они растут и размножаются (рис. 3). Основным фактором эволюционного давления для одноклеточных, ограничивающим их размножение, является доступность питательных веществ. Поэтому метаболизм одноклеточных эволюционно развивался так, чтобы запасы питательных веществ и свободной энергии были направлены, в первую очередь, на построение структур, необходимых для возникновения новой клетки. Большинство одноклеточных размножается с использованием энергии гликолиза, даже когда кислорода достаточно. Следовательно, несмотря на низкую эффективность (две молекулы АТФ против 36), гликолиз может обеспечить достаточно энергии для клеточной пролиферации.

Рисунок 3. Завершающая стадия клеточного деления инфузории. Фотография сделана с использованием дифференциального интерференционного контраста ×40.

У многоклеточных организмов, напротив, клетки дифференцированы и напрямую с окружающей средой не взаимодействуют. В зависимости от функции, предназначенной им природой, клетки формируют ткани, а ткани — органы. За счет разделения функций, клетки в тканях имеют постоянный приток питательных веществ, поэтому деление клеток этим фактором ограничиваться не может. Для предотвращения неконтролируемого деления клеток у многоклеточных организмов появляются дополнительные системы управления. Например, экзогенные факторы роста стимулируют пролиферацию клеток, как бы давая «разрешение» на возможность делящейся клетке использовать питательные вещества из внешней среды [12], [13]. Опухолевые клетки многоклеточного организма способны преодолевать зависимость пролиферации от факторов роста посредством приобретения генетических мутаций, затрагивающих клеточные рецепторы, и использовать питательные вещества из внешней среды постоянно (рис. 2). Кроме того, мутации могут привести к чрезмерному поглощению глюкозы, превышающему биоэнергетические требования нормальных растущих или пролиферирующих клеток (рис. 4) [7], [14].

Читайте также:  Определить максимальны уровень цены закупки сырья сахарная свекла в соответствии с расчетными

Рисунок 4. Пролиферация раковых клеток легкого, сканирующий электронный микроскоп (STEM)

Но почему же менее эффективный обмен веществ (с точки зрения производства АТФ) предпочтителен для размножения одноклеточных организмов или безудержной пролиферации раковых клеток?

Одно из возможных объяснений состоит в идее самой пролиферации. Для осуществления процесса деления необходимо наличие большого количества строительного материала — нуклеотидов, аминокислот и липидов [15]. Глюкоза обеспечивает клетку энергией (расщепление дает до 38 молекул АТФ в трёхэтапном процессе), но также используется как стройматериал в процессе биосинтеза (поскольку содержит шесть атомов углерода). Например, в ходе биосинтеза одного из основных компонентов клеточных мембран — пальмитата (эфира пальмитиновой кислоты) — необходимо 16 атомов углерода и семь молекул АТФ [16]. Для синтеза аминокислот и нуклеотидов также требуется больше углерода, чем энергии. Так, одна молекула глюкозы может обеспечить 36 молекул АТФ, либо предоставить свои шесть атомов углерода. Очевидно, что в пролиферирующей клетке бóльшая часть глюкозы не может участвовать в производстве АТФ посредством окислительного фосфорилирования, поскольку одну молекулу глюкозы выгоднее использовать для синтеза 16-ти углеродной цепи пальмитиновой кислоты, в процессе окисления которой образуется 35 молекул АТФ.

Альтернативное объяснение заключается в том, что здоровые клетки многоклеточного организма не испытывают недостатка в поставке глюкозы из циркулирующей крови, и АТФ синтезируется постоянно [17], [18]. При этом даже незначительные колебания содержания АТФ/АДФ в таких клетках могут нарушить их рост. Нормальные клетки с дефицитом АТФ подвергаются апоптозу [19], [20]. Поддержание оптимального уровня АТФ/АДФ обеспечивается активностью специальных регуляторных киназ, которые снижают производство АТФ путем преобразования двух молекул АДФ в одну молекулу АТФ и одну АМФ; пролиферация при этом условии блокируется.

Опухолевые клетки используют в качестве основного источника энергии гликолиз и характеризуются генерацией избыточного лактата (содержащего три атома углерода), который выводится из клетки, хотя мог быть использован для синтеза АТФ или биосинтеза. Но, возможно, вывод избыточного углерода (в виде лактата) имеет смысл, поскольку он позволяет ускорить включение углерода в биомассу и облегчить деление клеток. Для большинства делящихся клеток важным является не выход АТФ, а скорость метаболизма. Например, иммунные реакции и заживление ран зависят от скорости пролиферативного умножения эффекторных клеток. Чтобы выжить, организм должен максимизировать скорость роста клеток. Клетки, которые наиболее эффективно превращают глюкозу в биомассу, растут быстрее. Кроме того, если для организма питательных веществ оказывается недостаточно, включается механизм активной утилизации избытка лактата. В печени в цикле Кори происходит переработка лактата, запасающегося в результате метаболизма активно пролиферирующей ткани [16]. Такой способ переработки органических отходов, образующихся в результате пролиферации клеток при иммунном ответе в результате заживления ран, частично пополняет энергетические запасы организма.

Заключение

В настоящее время гликолитический фенотип раковых клеток — это, по сути, универсальный маркер заболевания. «Раковый обмен» происходит по общебиологическим законам, но изменения касаются, прежде всего, количественной, а не качественной стороны. Эпигенетические изменения в клетках на ранних этапах злокачественной трансформации приводят к потере функциональной активности митохондрий, ингибированию апоптоза, активации пролиферации. Все эти факторы заставляют раковые клетки в качестве основного источника энергии использовать гликолиз даже в присутствии достаточного количества кислорода. Но неэффективный с точки зрения производства АТФ гликолиз дает раковым клеткам определенное преимущество. Безудержная пролиферация раковых клеток требует наличия большего количества биоматериала для репликации клеточных структур, чем энергии АТФ, и только гликолиз способен поддерживать такой путь метаболизма.

Источник

Правильные рекомендации
Adblock
detector