Общие пути превращения глюкозы в организме

Содержание
  1. Важнейшие пути превращения глюкозы в клетке.
  2. Общие пути превращения глюкозы в организме
  3. Глава 17. Пути метаболизма глюкозы
  4. Читайте также
  5. Глава 4. Два пути
  6. ПУТИ СНАБЖЕНИЯ
  7. 7. Виды метаболизма бактерий
  8. Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции
  9. Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы
  10. Глава 4 Препятствия на пути кислорода
  11. Транспорт глюкозы из крови в клетки
  12. Глава 27. Регуляция и взаимосвязь метаболизма
  13. Взаимосвязь метаболизма
  14. Особенности метаболизма в форменных элементах крови
  15. Глава 32. Особенности метаболизма в нервной ткани
  16. Концентрация глюкозы в крови – важнейшая константа
  17. Глава 24. ГДЕ СХОДЯТСЯ ВСЕ ПУТИ
  18. Глава IV. Пути изучения фенофонда
  19. Глава 3. Неисповедимы пути полового отбора

Важнейшие пути превращения глюкозы в клетке.

Важнейшие пути превращения глюкозы в клетке.

В клетках глюкозо-6-фосфат может использоваться в различных процессах, основными из которых является: 1-синтез гликогена (форма депонирования глюкозы), 2-синтез некоторых аминокислот, гетерополисахаридов, пентоз, липидов, 3-катаболизм глюкозы до лактата или до СО2 и Н2О, который служит основным источником энергии для организма

Химизм и характеристика II этапа гликолиза.

Вторая стадия – наиболее сложная и важная. Она включает окислительно-восстановительную реакцию (реакция гликолитической оксидоредукции), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ. В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты ** и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или бромацетатом, протекает в несколько этапов:

Глицеральдегид—3-фосфат Глицеральдегид- фосфатдегидрогеназа


+ НАДН + Н+ 1,3-Бисфосфоглицерат

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком ≪тильда≫

).Механизм действия глицеральдегидфосфатдегидрогеназы сводится к следующему: в присутствии неорганического фосфата НАД+ выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь богата энергией, но она непрочная и расщепляется под влиянием неорганического фосфата, при этом образуется 1,3 бисфосфоглицериновая кислота.

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфогли цериновой кислоты (3-фосфоглицерат):

+ АТФ

1,3-Бисфосфоглицерат Фосфоглицераткиназа 3-Фосфоглицерат

Таким образом, благодаря действию двух ферментов (глицеральде-гидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы глицеральдегид-3-фосфата докарбоксильной группы, запасается в форме энергии АТФ. В отличие от окислительного фосфорилирования образование АТФ из высокоэнергетических соединений называется субстратным фосфорилированием.

Важнейшие пути превращения глюкозы в клетке.

В клетках глюкозо-6-фосфат может использоваться в различных процессах, основными из которых является: 1-синтез гликогена (форма депонирования глюкозы), 2-синтез некоторых аминокислот, гетерополисахаридов, пентоз, липидов, 3-катаболизм глюкозы до лактата или до СО2 и Н2О, который служит основным источником энергии для организма

Источник

Общие пути превращения глюкозы в организме

а) Главенствующая роль глюкозы в метаболизме углеводов. Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Читайте также:  Пенициллин при сахарном диабете

Соответствующие ферменты, необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов — глюкозы, фруктозы и галактозы — показаны на рисунке ниже.

Взаимные превращения трех основных моносахаридов (глюкозы, фруктозы и галактозы) в клетках печени

В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.

Хотелось бы еще раз подчеркнуть, что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения — глюкозой.

б) Транспорт глюкозы через мембрану клетки. Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Насквозь прободая липидную мембрану клеток, белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться; если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

Подробно механизм облегченной диффузии применительно к транспорту через клеточные мембраны изложен в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

Источник

Глава 17. Пути метаболизма глюкозы

Глава 17. Пути метаболизма глюкозы

Глюкоза является основным метаболитом и транспортной формой углеводов в организме человека и животных. Источниками глюкозы являются углеводы пищи, гликоген тканей и процесс глюконеогенеза в печени и корковом веществе почек. Для включения глюкозы в метаболизм она должна фосфорилироваться с образованием глюкозо-6-фосфата (Г-6-Ф), который далее может превращаться по различным метаболическим путям. На Рис. 17.1. представлены основные пути метаболизма глюкозы.

Читайте также:  Подмор пчел лечение сахарный диабет

Гликолиз – главный путь катаболизма глюкозы путем последовательных ферментативных превращений до лактата (без потребления кислорода – анаэробный гликолиз) или через окислительное декарбоксилирование пирувата до СО 2 и Н 2О (в присутствии кислорода – аэробный гликолиз).

Процесс аэробного гликолиза включает несколько стадий:

1. Аэробный гликолиз – процесс окисления глюкозы с образованием двух молекул пирувата;

2. Общий путь катаболизма, включающий окислительное декарбоксилирование пирувата до ацетил КоА и его дальнейшее окисление в цикле трикарбоновых кислот;

3. Цепь тканевого дыхания, сопряженная с реакциями дегидрирования, происходящими в процессе распада глюкозы.

Суммарный выход АТФ при окислении 1 моль глюкозы до СО 2 и Н 2О составляет 38 моль.

Рис. 17.-1. Общая схема путей метаболизма глюкозы.

1 – аэробный гликолиз; 2 – анаэробный гликолиз; 3 – спиртовое брожение; 4 – пентозофосфатный путь; 5 – синтез гликогена; 6 – распад гликогена; 7 – глюконеогенез.

Анаэробный гликолиз – процесс расщепления глюкозы с образованием в качестве конечного продукта лактата. Этот процесс протекает без использования кислорода и поэтому не зависит от работы митохондриательной сети. АТФ здесь образуется за счет реакций субстратного фосфорилирования. Баланс АТФ при анаэробном гликолизе составляет 2 моль в расчете на 1 моль глюкозы.

Аэробный гликолиз происходит во многих органах и тканях и служит основным, хотя и не единственным, источником энергии для жизнедеятельности.

Кроме энергетической функции гликолиз может выполнять и анаболические функции. Метаболиты гликолиза используются для синтеза новых соединений. Так, фруктозо-6-фосфат и глицеральдегид-3-фосфат участвуют в образовании рибозо-5-фосфата – структурного компонента нуклеотидов. 3-фосфоглицерат может включаться в синтез аминокислот, таких как серин, глицин, цистеин. В печени и жировой ткани ацетил-КоА, образующийся из пирувата, используется как субстрат при биосинтезе жирных кислот, холестерина.

Анаэробный гликолиз активизируется в мышцах при интенсивной мышечной работе, происходит в эритроцитах (в них отсутствуют митохондрии), а также в разных условиях ограниченного снабжения их кислородом (спазм и тромбоз сосудов, формирование атеросклеротических бляшек).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 4. Два пути

Глава 4. Два пути Факт или артефакт? Профессор С. Северин, узнав, что вслед за Шарфшвертом я освоил заокеанскую методику, попросил применить ее к другому объекту: вместо печени крысы надо было взять грудную мышцу голубя. План моего руководителя состоял в том, чтобы

ПУТИ СНАБЖЕНИЯ

ПУТИ СНАБЖЕНИЯ У берегов восточного Крыма, там, где горбится величественный горный массив Карадаг, прямо из голубых вод Черного моря поднимается грандиозная скала Золотые ворота, похожая на огромную арку, увенчанную шпилем. Старожилы окрестных городов и поселков,

7. Виды метаболизма бактерий

7. Виды метаболизма бактерий В процессе метаболизма выделяют два вида обмена:1) пластический (конструктивный):а) анаболизм (с затратами энергии);б) катаболизм (с выделением энергии);2) энергетический обмен (протекает в дыхательных

Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции

Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции Пер. А. НестеровойВ этой главе мы продолжим обсуждение эволюционной биологии в период до появления геномики. Многие из обсуждаемых направлений развития не являлись

Читайте также:  Проблемы пищеварения при диабете

Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы

Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы Пер. А. НеизвестногоВ предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли

Глава 4 Препятствия на пути кислорода

Глава 4 Препятствия на пути кислорода В нормальной атмосфере гемоглобин связывает только кислород. Это значит, что на связывание кислорода не оказывают воздействия другие компоненты воздуха: азот, двуокись углерода, пары воды или аргон. Гемоглобин собирает

Транспорт глюкозы из крови в клетки

Транспорт глюкозы из крови в клетки Поглощение глюкозы клетками из кровотока происходит, также путем облегченной диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента ее концентрации. Исключение составляют клетки мышц и жировой

Глава 27. Регуляция и взаимосвязь метаболизма

Глава 27. Регуляция и взаимосвязь метаболизма Для нормального функционирования организма должна осуществляться точная регуляция потока метаболитов по анаболическим и катаболическим путям. Все сопутствующие химические процессы должны протекать со скоростями,

Взаимосвязь метаболизма

Взаимосвязь метаболизма Метаболизм в целом не следует понимать как сумму обменов белков, нуклеиновых кислот, углеводов и липидов. В результате взаимодействия обменов отдельных классов органических соединений возникает единая система метаболических процессов,

Особенности метаболизма в форменных элементах крови

Особенности метаболизма в форменных элементах крови Эритроциты:1. Зрелые эритроциты лишены ядра, поэтому в клетке не синтезируются белки. Эритроцит почти целиком заполнен гемоглобином.2. Эритроциты не имеют митохондрий, поэтому в клетке не протекают реакции ЦТК, ЦТД,

Глава 32. Особенности метаболизма в нервной ткани

Глава 32. Особенности метаболизма в нервной ткани Человеческий мозг – это самая сложная из всех известных живых структур. Нервной системе и, в первую очередь, головному мозгу принадлежит важнейшая роль в координации поведенческих, биохимических, физиологических

Концентрация глюкозы в крови – важнейшая константа

Концентрация глюкозы в крови – важнейшая константа На рис. 2.10 обмен углеводов представлен в виде схемы. Основным показателем состояния углеводного обмена является содержание глюкозы в крови. Нормальным является показатель от 4,4 до 6,6 миллимоля, что соответствует

Глава 24. ГДЕ СХОДЯТСЯ ВСЕ ПУТИ

Глава 24. ГДЕ СХОДЯТСЯ ВСЕ ПУТИ Последние четыре главы были посвящены, тем или иным образом, процессам, связанным с катаболизмом глюкозы — сначала до молочной кислоты путем анаэробного гликолиза, потом — до углекислоты и воды путем цикла Кребса. Однако нельзя сказать,

Глава IV. Пути изучения фенофонда

Глава IV. Пути изучения фенофонда Понятие «фенофонд» родилось в нашей стране. В московской школе генетиков, возглавляемой Н. К. Кольцовым, и в ленинградской школе, возглавляемой Ю. А. Филипченко, в 20-х годах интенсивно шло обсуждение популяционно-генетических вопросов. В

Глава 3. Неисповедимы пути полового отбора

Глава 3. Неисповедимы пути полового отбора Тайны полового отбора Эволюция в направлении производства половых клеток разного размера сама создает новое селективное давление, которое способствует дальнейшей дифференциации двух морфотипов гамет. Происходит это

Источник

Правильные рекомендации