Синтез глюкозы из пирувата

Синтез глюкозы из пирувата

Большинство стадий глюконеогенеза представляет собой обращение реакций гликолиза. Только три реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процессе глюконеогенеза на трех этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется (В реакцию вступает так называемая активная форма СО2, в образовании которой, помимо АТФ, участвует биотин.) с образованием оксалоацетата:

Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксикиназы (Название фермента дано по обратной реакции) превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):

В дальнейшем было установлено, что в процессе образования фосфоенолпирувата участвуют как ферменты цитоплазмы, так и митохондрий.

Первый этап локализуется в митохондриях (рис. 88). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же в митохондриях восстанавливается в малат:

Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН2/НАД относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии, проходя митохондриальную мембрану. В цитоплазме отношение НАДН2/НАД очень мало и малат вновь окисляется в оксалоацетат при участии цитоплазматической НАД-зависимой малатдегидрогеназы:

Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитоплазме клетки. На рис. 89 изображен изложенный выше процесс образования фосфоенолпирувата из пирувата.

Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-дифосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:

Читайте также:  Сахарный диабет бич нашего времени

Следует заметить, что фруктозобисфосфатаза ингибируется АМФ и активируется АТФ, т. е. данные нуклеотиды оказывают на фруктозобисфосфатазу действие, противоположное их действию на фосфофруктокиназу (см. с. 329). Когда концентрация АМФ мала, а концентрация АТФ велика, то стимулируется глюконеогенез. Напротив, когда величина отношения АТФ/АМФ низка, в клетке происходит расщепление глюкозы.

Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т. е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:

На рис. 89 представлены «обходные» реакции при биосинтезе глюкозы из пирувата и лактата. Интересно отметить, что между гликолизом, интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюконеогенезом, особенно характерным для печеночной ткани, существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избыток молочной кислоты, диффундирующей в кровь. Значительная часть избытка лактата в печени превращается в глюкозу (глюконеогенез). Образовавшаяся в печени глюкоза затем может быть использована как энергетический субстрат, необходимый для деятельности мышечной ткани. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени представлена на схеме.

Аэробный метаболизм пирувата

Окисление пирувата до ацетил-КоА (окислительное декарбоксилирование пировиноградной кислоты)

Окисление пирувата до ацетил-КоА, катализируемое пируватдегидрогеназной системой, протекает в несколько стадий (рис. 90). В нем принимают участие три фермента (пируватдегидрогеназа, липоатацетилтрансфераза, липоамиддегидрогеназа) и пять коферментов (НАД, ФАД, тиаминдифосфат, амид липоевой кислоты и коэнзим А). Суммарно реакцию можно написать следующим образом:

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Первая стадия окислительного декарбоксилирования пирувата катализируется ферментом пируватдегидрогеназой (E1); коферментом в этой реакции служит ТДФ. Отщепляется СО2, и из пирувата образуется гидроксиэтильное производное ТДФ:

Читайте также:  Слайды лекции сахарный диабет

Ацетил-липоат (связанный с ферментным комплексом) затем взаимодействует с коэнзимом А (третья стадия). Реакция катализируется ферментом липоат-ацетилтрансферазой (Е2). Образуется ацетил-КоА, который отделяется от ферментного комплекса:

В четвертой стадии происходит окисление восстановленной липоевой кислоты до ее дисульфидной формы. Реакция катализируется ферментом липоамид-дегидрогеназой (Е3), которая содержит кофермент ФАД, способный к восстановлению:

Наконец, в пятой стадии Е3-ФАДН2 окисляется за счет НАД. В результате реакции регенерирует окисленная форма Е3-ФАД и образуется НАДН2:

Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальше окислению с образованием в конечном счете СO2 и Н2O. Иными словами, полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот или цикле Кребса. Этот процесс, так же как и окислительное декарбоксилирование пирувата, происходит в митохондриях клеток.

Глиоксилатный цикл

У высших растений и микроорганизмов в процессе глюконеогенеза важную роль играет глиоксилатный цикл. Благодаря данному циклу высшие растения и микроорганизмы способны превращать двууглеродные метаболиты, а следовательно, и ацетил-КоА в углеводы. В животных клетках отсутствуют два ключевых фермента глиоксилатного цикла: изоцитратлиаза и малатсинтаза, а потому в них этот цикл осуществляться не может.

Общую схему глиоксилатного цикла можно представить так:

Источник

Правильные рекомендации
Adblock
detector